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Abstract

The remediation of groundwater contamination continues to persist as a social and

economic problem due to increased governmental regultions and public health concerns.

Additionally, the geochemistry of the aquifer and the contaminant transport within the

aquifer complicates the remediation process to restore contaminated aquifers to conditions

compatible with health-based standards. Currently, the preferred method for aquifer

cleanup (pum md-treat) has several limitations including, the persistence of sorbed

chemicals on soil matrix and the long term operation and maintenance expense. The

impetus of this research was to demonstrate that a calculus of variations approach could

be applied to a pulsed pumping aquifer remediation problem where contaminant transport

was affected by rate-limited sorption and generalized to answer several management

objectives. The calculus of variation approach produced criteria for when the extraction

pump is turned on and off. Additionally, the analytic solutions presented in this research

may be useful in verifying numerical codes developed to solve optimal pulsed pumping

aquifer remediation problems under conditions of rate-limited sorption.



OPTIMAL PULSED PUMPING FOR AQUIFER REMEDIATION WHEN

CONTAMINANT TRANSPORT IS AFFECTED BY RATE-LIMITED

SORPTION: A CALCULUS OF VARIATIONS APPROACH

1. Introduction

General Issue

Groundwater accounts for 0.6 percent of the world's water and is the source of

drinking water for 53 percent of the nation's population (Masters, 1991:104; Claborn &

Rainwater, 1991:1290). Within the last several years, the quality of groundwater has

become a sensitive issue beth localy and nationally due to the years of accidental and/or

deliberate disposal of hazmrdnus materials into the ground soil. Historically, groundwater

was considered a safe source of drinking water, however, groundwater sources are still

contaminated by leachates from dumps, landfills, agriculture, septic tanks, cesspools,

underground storage tanks, and chemical spills which continue to introduce various

inorganic and organic solutes into aquifer systems (Masters, 1991:147; Ortolano,

1984:399). To address these issues the federal government has promulgated several strict

and comprehensive laws, such as the Resource Conservation and Recovery Act (RCRA),

the Superfund Amendments and Reauthorization Act (SARA) of 1986, and the Safe

Drinking Water Act amendments of 1986.

The magnitude of this problem is reflected in the Environmental Protection

Agencies (EPA's) National Priorities List (NPL) which lists over 1,200 sites. It has been

estimated that "more than 70 percent of the nearly 1,200 hazardous waste sites on the

NPL are contaminated with chemicals at levels exceeding federal drinking-water

standards" (National, 1991:117). To address these problems the Department of Defense

has engaged in a massive program to remediate all sites that pose a threat to public health,

1-1



welfare, or the environment (U.S. Air Force IRP Remedial Project Manger's Handbook,

1989:1-1). This program is known as the Installation Restoration Program (IRP).

One of the most ubiquitous groundwater contaminants are volatile organic

compounds (VOCs). Today, interest in VOC contamination persists due to the

prevalence of VOC groundwater contamination, the potential chronic health concerns

associated with these organic chemicals, and the observed difficulties encountered with

groundwater remediation at VOC contaminated sites (Haley et. al., 1991:120; MacKay &

Cherry, 1989:630). One of the factors limiting the effective removal of these

contaminants is the sorption of these contaminants to the aquifer media, that is, sorbed

contaminant mass may be on the same order or greater than the dissolved contaminant

mass (Haley et. al., 1991; MacKay & Cherry, 1989). This mass of sorbed contaminants is

often not accounted for in aquifer restoration and confounds the ability to remediate

contaminated aquifers to a condition compatible with health-based standards.

To help describe and predict the behavior of groundwater flow and solute

transport, the nature of the aquifer contaminant system can be described by mathematical

models (Mercer & Faust, 1981:1). Mathematical models are useful tools that help the

hydrologist determine the fate and transport of contaminants. Today, many groundwater

models exist which describe groundwater flow and solute transport. However, due to the

complexity of the subsurface it is virtually impossible to model all of the mechanisms

impacting contaminant fate and transport.

Traditionally, the advection-dispersion equation has been used to model

contaminant transport. This equation uses a retardation factor to account for sorption.

Use of a retardation factor implicitly assumes local equilibrium between contaminant in the

sorbed and aqueous phases (Lapidus & Amundson, 1952:984). Largely due to

mathematical simplicity, the local equilibrium assumption (LEA) is frequently used to

simulate solute transport. Recently, however, experimental observations from the
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laboratory and the field have provided evidence that, at least in certain cases, the LEA is

not valid (Goltz, 1991:24; Goltz & Roberts, 1988:61).

These problems are associated with two phenomena called tailing and rebound.

Tailing is the asymptotic decrease in the contaminant concentration in extracted water

after a relatively rapid initial decrease. Rebound is the increase in contaminant

concentration after cessation of pumping (Adams & Viramontes, 1993:1-4). These

phenomena are usually observed years after the pump-and-treat process has been ceased

and the hazardous waste site is closed (Travis & Doty, 1990:1465; Mackay and Cherry,

1989:633). Fortunately, these phenomena can be described by rate-limited

sorption/desorption, since it appears that the contaminant in the sorbed and aqueous

phases do not equilibrate instantly but reach equilibrium slowly (Adams & Viramontes,

1993:1-4).

Unfortunately, groundwater models used today in aquifer cleanup efforts at Air

Force IRP sites do not account for rate-limited sorption/desorption (Goltz & Oxley,

1990). This can lead to an underestimation of aquifer cleanup time and premature

cessation of pumping to control contamination (Goltz & Oxley, 1991:554). Ultimately,

this results in desorption and reintroduction of the contaminant into an aquifer that was

presumed to be clean. Obviously, use of such models which do not incorporate rate-

limited sorption/desorption may additionally create social and economic impacts by

promoting a false sense of security to the community and an increase in treatment cost.

Social and legal impacts of remediation require that contaminated sites be cleaned

up to health-based standards that are mandated by Federal, State, and Air Force

regulations. "This remediation usually involves the treatment of water pumped from the

ground." (Greenwald & Gorelick, 1989:73) In fact, the most widely used method of

groundwater treatment involves pump-and-treat techniques for aquifer remediation, where

contaminated groundwater is removed from the ground by wells, treated and disposed
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(Ammons, 1988;1). Additionally, the EPA predicts that pump-and-treat methods will

remain to be the remedy of choice at least in the foreseeable future (McKinney & Lin,

1992:695).

Groundwater remediation still remains one area where technology has failed to

achieve health-based cleanup goals (Travis & Doty, 1990:1465). Since the characteristics

of contaminant transport affected by rate-limited sorption imply slow removal (i.e.,

removal of the waste over a longer time period) and increased water treatment when

compared with equilibrium sorption, one would predict an increase in remediation cost

when transport is affected by rate-limited sorption. As of today, several models have been

created describing optimal methods for groundwater plume removal under the LEA. In

fact, only recently have groundwater models addressed the effects of rate-limited sorption

(Adams & Viramontes, 1993; Huso, 1989; Harvey, Haggerty & Gorelick, 1993). Despite

this fact, none have incorporated an optimal method for groundwater remediation affected

by rate-limited sorption/desorption. If pumping rates can be optimized to create a

pumping schedule with a more representative model of the contaminant transport,

contaminated water may be removed more efficiently and cost effectively to health based

cleanup goals.

Specific Problem

The purpose of this research is to use a calculus of variation approach to derive

and test a set of management criteria described by objective functionals and constraints

that account for the economic, social, physical and chemical concerns related to pulsed

pumping aquifer remediation. More importantly, these functionals and constraints should

model aquifer remediation when contaminant transport is affected by rate-limited sorption.
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Research Objectives

The specific objectives of this research are:

1. Develop objective functionals which address cleanup cost, cleanup time, mass of

contaminant removed, risk, etc. at a single extraction/monitoring well.

2. Modify an existing contaminant transport equation to allow for rate-limited sorption

measured at a single extraction/monitoring well.

3. Form the finite time horizon optimization problem for the minimization of the objective

functional over the set of pulsed pumping schedules subject to contaminant tra -t in a

radially symmetric infinite aquifer.

4. Develop necessary and sufficient optimality conditions for pulsed pumping schedules

for the finite time horizon optimization problem.

5. Determine the optimal pulsed pumping schedules for various objective functionals

using the simple case of contaminant transport in a radially symmetric infinite aquifer

affected by rate-limited sorption.

Scope and Limitations of the Research

This research details the development of a general optimization problem which

incorporates an objective functional and constraints and will use Lagrange multiplier

theory. A calculus of variation approach will be taken to solve the problem. Since this

research is predominantly a proof of concept, the scope of the research will concentrate on

the transport of a contaminant for an ideal model aquifer. The prevailing limitations of

this research are the physical and chemical constraints of the transport equation (i.e., the

final results are only as good as the transport equation and the assumptions in the

formulation of the transport equation).
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The transport equation for this research will describe the physical and chemical

behavior of groundwater flow and contaminant transport from an extraction well for a

radially symmetric aquifer that is infinite in aerial extent including: advection, dispersion,

and rate-limited sorption/desorption. The equation will not address confounding problems

usually present in an aquifer system, such as precipitation or the effects of drawdown,

since it is assumed that an infinite amount of water is stored in the aquifer. The material

within the aquifer will be homogenous and isotropic, the concentration will be limited

(i.e., no external sources of pollution) and molecular diffusion in the mobile region will be

much smaller than the dispersion due to the flow rate caused by the pump near the well.

Lastly, necessary and sufficient optimality conditions will be thoroughly evaluated

for the general problem using a calculus of variation approach through the evaluation of

the dependent variables of the integral incorporating both the objective functional and the

constraints.

Definitions

Key terms associated with contaminant transport and aquifer remediation are listed

below. Unless otherwise noted they are Environmental Protection Agency (EPA)

definitions (EPA, 600/8-90/003, 1990; EPA, 540/S-92/016, 1993).

1. Absorption: A uniform penetration of the solid by a contaminant.

2. Adsorption: An excess contaminant concentration at the surface of a solid.

3. Advection: The process whereby solutes are transported by the bulk mass of flowing

fluid.

4. Aquifer: A geologic unit that contains sufficient saturated permeable material to

transmit significant quantities of water.
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5. Breakthrough Curve: Contaminant concentration versus time relation (Freeze &

Cherry, 1979:391).

6. Cleanup: The attainment of a specified contaminant concentration (Goltz & Oxley,

1991:547).

7. Concentration Gradient: Movement of a contaminant from a region of high

concentration to a region of lower concentration ( Freeze & Cherry, 1979:25).

8. Desorption: The reverse of sorption.

9. Diffusion: Mass transfer as a result of random motion of molecules. It is described by

Fick's first and second law.

10. Dispersion: The spreading and mixing due to microscopic variations in velocities

within and between pores.

11. Homogeneous: A geologic unit in which the hydrologic properties are identical from

point to point.

12. Pulsed Pumping: A pump-and-treat enhancement where extraction wells are

periodically not pumped to allow concentration in the extracted water to increase.

13. Retardation: The movement of a solute through a geologic medium at a velocity less

than that of the flowing groundwater due to sorption or other removal of the solute.

14. Sorption: The generic term used to encompass the phenomena of adsorption and

absorption.

15. Tailing: The slow, nearly asymptotic decrease in contaminant concentration in water

flushed through contaminated geologic material.

Overv4ew

This thesis consists of five chapters. Chapter 1 identified that remediation models

which do not account for the phenomena of rate-limited sorption can lead to an

underestimation of cleanup time creating the potential reintroduction of contaminants into

the aquifer (Goltz & Oxley, 199:547). Optimization was also suggested as a tool to be
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utilized with pump-and-treat remediation that will address the economic, social, physical

and chemical concerns related to groundwater contamination. Chapter 1 concludes with a

research proposal to develop and test a calculus of variation approach to determine

optimal pulsed pumping for aquifer remediation when contaminant transport is affected by

rate-limited sorption.

Chapter 2 consists of a thorough literature search highlighting groundwater

optimization and contaminant transport modeling. It will review the problems associated

with sorption and desorption, address the transport equation to be modified, and introduce

the rationale behind the proposed pulsed pumping strategy. It will also discuss the

historical evolution of groundwater remediation optimization techniques. Chapter 2 will

conclude with a summary of the literature and end with the motivation for this particular

research.

Chapter 3 will focus on the development of the general optimization problem and

the specific optimization problem statement. It will address several issues including the

necessary optimality conditions for the first and second variation and the sufficient

optimality conditions to ensure that the physics and mathematics utilized correctly meet

the objective to create a management tool which will determine an optimized pulsed

pumping schedule for aquifer remediation when contaminant transport is affected by rate-

limited sorption/desorption. A procedure will also be described to determine an optimal

solution to the mathematics described dependent on the management objective.

Chapter 4 will apply the findings from Chapter 3 and identify eight subclasses of

objective functionals. From these eight subclasses, general cases will be developed and

evaluated analytically to determine interesting/non-interesting and trivial/nontrivial cases

from a management perspective for groundwater remediation when contaminant transport
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is affected by rate-limited sorption. Specific examples will be evaluated and the analytical

solutions will provide management decisions for either a pulsed pumping strategy, a

continuous pumping strategy, or not to pump at all for specific objective functionals.

Chapter 5 will summarize the research and develop conclusions from the findings and

recommend follow-on research.
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2. Literature Review

Introduction

Groundwater remediation remains one area where technology has failed to produce

clear solutions to health-based cleanup goals (Travis & Doty, 1990:1465). As limitations of

pump-and-treat become more apparent, the search continues for new ways to treat

subsurface contamination (Harris, 1991:48).

It has been found through field studies and mathematical modeling that rate-limited

sorption/desorption can have a profound effect on the transport of sorbing organic

contaminants (Goltz & Roberts, 1988; Nkedi-Kizza, P., Rao, Jessup, & Davidson, 1982;

VanGenuchten & Wierenga, 1976). Currently, the models used to help plan aquifer cleanup

efforts at Air Force Installation Restoration Program (IRP) sites do not account for rate-

limited sorption/desorption (Goltz & Oxley, 1990). Rate-limited sorption is due to the slow

diffusion of solute through zones of unsaturated or slow flow. The theoretical work done

by Goltz and Oxley (1991) demonstrates that overlooking rate-limited sorption effects can

lead to an underestimation of aquifer cleanup time (Goltz & Oxley, 1990).

Due to the tailing effect observed in aquifers affected by rate-limited sorption, pump-

and-treat remediation has been criticized. This criticism evolves from the fact that large

volumes of water are treated only to remove minimal amounts of contaminant at a high cost

and not necessarily to health-based standards (Goltz & Oxley, 1991:547; Mackay and

Cherry, 1989:630; Keely and others, 1987:94; Olsen and Kavanaough, 1993:44). An

alternative method to resolve this problem is a pulsed pumping schedule which allows
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desorption to occur during periods when the pumps are turned off (Keely and others,

1987:94).

Additionally, to address the high operational cost of aquifer remedial designs

optimization models have been developed to minimize the cost of aquifer remediation. The

goal of the optimization approach is to evaluate and increase the efficiency and cost

effectiveness of current remediation techniques (McKinney & Lin, 1992:695). In particular,

pump-and-treat methods have been addressed since they are the preferred method of

remediation and continue to be associated with high operational cost. Optimization to date

has mainly concentrated on remediation techniques which determine static (steady state)

methods in which pumping does not change over time (Culver & Shoemaker, 1993:823).

This literature review will describe past and current research efforts to remediate

groundwater contamination using pump-and-treat methods while also addressing optimal

pumping strategies for both contaminant cleanup and containment. The literature review is

divided into four sections: (1) aquifer model development, (2) optimal pumping strategies

without the use of formal optimization techniques (e.g., pulsed pumping), and (3)

optimization of remediation models involving extraction and/or treatment with the use of

formal optimization techniques. This chapter concludes with a discussion on the relation

between the problems discussed in the literature and the problem addressed in this thesis.

Aquifer Model Development

This section of the literature review will discuss the evolution of mathematical

models used to simulate the transport of contaminants. This will range from the
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advective/dispersion model with linear sorption to the transport of contaminant affected by

rate-limited sorption/desorption in the immobile regions of the aquifer.

There are several ways to pose the physical and chemical nature of the

contaminant transport. Traditionally, the advection-dispersion equation has been used to

model contaminant transport. The classical dispersion model in cylindrical coordinates

(Valocchi, 1986:1693), is given by:

dC'(r,t) p cS(r,t) ! 31 D0 [ 9C'(r,t). _V(r)C'(r,t)(.)
+ P10[rD' V()O(r (2.1)

Ot 0 Ot r rr Or Or

where the symbols are defined by

C',(r, t) contaminant concentration in the mobile zone [M/L3]
r radial coordinate [L]
t time [T]
S(r,t) sorbed contaminant [unitless]
V'(r) seepage velocity [L/T]
p bulk density of aquifer material [M/L3]
0 aquifer porosity [unitless]

The term D' is the hydrodynamic dispersion coefficient [L2/T] and is described by

D' = aIV(r)I + D' (2.2)

where a, is the longitudinal dispersivity of the porous medium [L], IV'(r)l is the magnitude

of the seepage velocity [L/T], and D" is the molecular diffusion coefficient [L/T]. The

seepage velocity for the steady state cylindrical aquifer is given by:

V'(r) = -Q(t) (2.3)

2,rb2r
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where Q(t) is the constant pumping rate at the well [L3/T], and b is the aquifer thickness

[L].

When the pump is turned on, the molecular diffusion D" is negligible close to the

well when compared to the mechanical dispersion aiIV'(r)I (Valocchi, 1986:1694).

However, when the pump is turned off, it is believed that the opposite occurs and that

molecular diffusion is dominant in comparison with the mechanical dispersion.

Models generally differ in the characterization of the .6S term (Weber and others,
't

1991:505). The simplest model to describe the accumulation of solute by the sorbent is

usually represented by S = KdC, where Kd is the partition coefficient [L3/M] reflecting

the sorption, which implies that the accumulation of the solute by the sorbent is directly

proportional to the solution phase concentration (Domenico & Schwartz, 1990:441).

Substituting this equation into equation (2.1) creates:

, C'(rt) p SS(r,t) 1 0[" OC'(r,t) , .9C'(r,t)
R - + - =- rD ]- '(r) (2.4)

p Kd [6 t r foI

This equation uses a retardation factor, R= 1+ [unitless] to account for
0

sorption that assumes local equilibrium assumption (LEA) between contaminant in the

sorbed and aqueous phases. Recently, however, it has been identified in other investigations,

that experimentally obtained breakthrough responses exhibited sharper initial
breakthrough and more tailing than would be predicted using models that assume
linear, reversible, equilibrium sorption. (Goltz and Roberts, 1986, p. 81)
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Due to the assumption of equilibrium sorption, the affects of rate-limited

sorption/desorption were not considered. This creates a problem because the time to

clean a contamination site is underestimated. To address this problem Goltz and Oxley

developed a mathematical model describing the transport of a single sorbing solute in a

radially flowing aquifer in a porous medium with immobile water regions:

9CM(r,t) D'(r) OC•C(r,t) V'(r) tCC,(rt) Om R,m OC'm(r,t) (2.5)
cOt Rm , 9r2  Rm Or Om Rm Ot

where the symbols are defined by:

C' (r, t) solute concentration in the mobile region [M/L3 ]
C' (r, t) volume-averaged immobile region solute concentration [M/L3 ]
Vm' (r) mobile region seepage velocity [L/T]
D' (r) mobile region dispersion coefficient [L2/T]
0. mobile region porosity [unitless]
On immobile region porosity [unitless]
R• mobile -egion retardation factor [unitless]
R. immobile region retardation factor [unitless]

where

-Q(t)(.6
V'(r)= 2rbOr2.6)

and

D'n = alV(r)l + D' (2.7)

This expression assumes that sorption onto the solids is linear and reversible, with

the effect of sorption incorporated into Rm and Rim, where Rm = I + P d

0m
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Rim =I+I 1f)Kd , and f is the fraction of sorption sites adjacent to regions of mobile
91n

water (Adams & Viramontes, 1993:2-14). This model also assumes that solute transfer

between the mobile and immobile regions can be described by a first-order differential

equation:

eC'(r,t) a'
9t - R n [C '(r,t)- C'(r,t)] (2.8)

where a' is a first-order rate constant [1/T] and it is assumed that the solute transfer is a

function of the solute concentration difference between the mobile and immobile regions.

This combination of equations describes the two-region first-order sorbing solute transport

(Adams & Viramontes, 1993). Since this mathematical model describes the phenomena of

rate-limited sorption it is the most appropriate transport constraint for the optimization

problem.

Note that if both the Valocchi equation (2. 1) and the Goltz & Oxley equation (2.5)

are combined the equation which incorporates both molecular diffusion and mechanical

dispersion follows:

OC' (r,t) -I I_( aQ'(t) +rD 9C',,(rt) 1 Q'(t) )D'e9C1,(rt) GnR . 0•C,(r,t)
9 Rmr R. 2re bOn 9r' R. 2 r +, Db 0, r mRi, R 9t

(2.9)

Using equations (2.8) and (2.9), the effects of rate-limited sorption can be addressed as

the transport constraint for the optimization problem.
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The next two sections will discuss the proposed optimal pumping strategy (pulsed

pumping) to be utilized with the transport equations along with remedial optimization

techniques.

Optimal Pumping Strategies

The most prevalent method of remediation is pump-and-treat. This well water

pumping technique has existed for a reasonable time, but has not seriously addressed the

various problems associated with the cost and ability to reach health-based standards. In

fact, this approach has been severely criticized primarily due to its ineffectiveness in

achieving health-based cleanup standards coupled with extended periods of cleanup and

high cost. Additionally, these methods have not addressed aquifers where rate-limited

sorption/desorption is significant. This section will address an alternative pumping

schedule that can account for rate-limited sorption/desorption and potentially provide an

optimal pumping strategy.

Due to the persistence of residual contamination where pumping may be continued

indefinitely or may lead to premature cessation of the remediation and closure of the site,

Keely et al. (1987) recognized the problems of conventional groundwater contamination

remediation which typically involve continuous operation of an extraction-injection

wellfield. Their solution was an alternative pumping scheme that would optimize

contaminant residual recovery by a pulsed pumping technique. This pulsed operation of

the hydraulic system cycles extraction or injection wells on and off in 'active' and 'resting'

phases, where the resting phase allows time for residual contaminants to migrate into the

mobile region and the active cycle will remove the minimum volume of contaminated
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groundwater, at the maximum possible concentration, for the most efficient treatment

(Keely et al., 1987:99).

Carlson (1989) created a numerical model based on the physical principle of

mobile and immobile zones and tested it using a pulsed pumping strategy. This model

verified that if the pumping is ceased before the immobile region is reduced significantly,

the concentrations in the mobile region increase with time.

Borden and Kao (1992) performed column experiments to test and examine the

kinetics of aromatic hydrocarbon dissolution as residual hydrocarbon ages. They also

developed a mathematical model to aid in the analysis of the experimental data and

simulate the efficiency of groundwater extraction systems for remediation of contaminated

aquifers in which non-aqueous-phase hydrocarbon is present as immobile globules. This

numerical model was used to evaluate three different remediation alternatives for a

hypothetical aquifer. These alternatives where: (1) constant pumping rate, (2) reduced

pumping rate and (3) pulsed pumping. It was noted that of the three remediation

alternatives, pulsed pumping may result in a greater amount of hydrocarbon recovered per

volume of water, but may increase the time to meet a required standard, since the long-

term efficiency of soil-flushing systems seems to be limited by the rate of aromatic

hydrocarbon transfer between larger oil globules and the aqueous phase (Borden & Kao,

1992:35).

Adams & Viramontes (1993) extended Carlson and others work by developing a

source code based on their solutions to the transport equation. They presented equations

governing contaminant transport affected by rate-limited sorption during aquifer
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remediation by pulsed pumping. They analytically solved the transport equation in the

Laplace domain using a Green's function technique and then performed a Laplace inverse

transform numerically to invert it back into the time domain. Their simulations indicate

that pulsed pumping operations can improve the efficiency of pump-and-treat remediation

of aquifer contamination.

Harvey et al. (1993), investigated pulsed pumping techniques and observed

problems with rebound due to the mass transfer from the immobile region to the mobile

region when the pump is turned off. They compared pulsed pumping to continuous

pumping (i.e., continually pumping at a constant rate) for a contaminant plume subject to

first order mass transfer during transport in an aquifer with no natural gradient. They

created several scenarios and determined contrary to the previous citations, that pulsed

pumping does not remove more mass of contaminant than an equivalent continuous

pumping rate where the same amount liquid volume was removed. Additionally, they

stated that for low continuous pumping rates and short pulsed pumping periods, pulsed

pumping is less efficient than continuous pumping. However, due to reduced pumping

time, savings in labor cost or the shared cost of treatment systems, pulsed pumping may be

preferable to continuous pumping.

This section discussed methods to optimize the remediation of contaminant sites

through the use of pumping techniques which did not utilize any formal optimization

method other than trial and error simulation. The next section will investigate methods

which truly attempt to combine remediation with optimization theory.
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Remediation Models Utilizing Optimization Techniques

Remediation projects designed around pump-and-treat methods are typically

accomplished with trial-and-error simulation of feasible combinations of pump locations

and pumping rates. Given the countless numbers of feasible remediation designs for a

given problem, an optimal management solution may never be identified by trial-and-error

simulation. To address this problem mathematical optimization techniques combined with

transport simulation can efficiently search through the potential design options and thus be

a useful tool for planning cost effective pump-and-treat groundwater remediation (Culver

& Shoemaker, 1992:629). This section of the literature review will address the evolution

of optimization techniques to provide cost effective strategies for groundwater

remediation.

In the early 1980's Gorelick published a comprehensive review of numerical

models which solve groundwater flow or solute transport equations in conjunction with

optimization techniques as aquifer management tools. Up to this time numerical models

primarily aided in the evaluation of groundwater resources. These same models were then

coupled with optimization methods to manage hydraulic gradients for groundwater wells.

As the threat to groundwater supplies became more evident, the necessity to

cleanup these contaminated sites increased due to potential health concerns and the

promulgation of several stringent federal requirements. Unfortunately, groundwater

remediation was only in its infancy and the most convenient method to prevent

contaminant plume migration from affecting regional groundwater supplies was to contain

the contaminant while effective cleanup strategies were being developed. Several studies
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addressed this strategy while attempting to make it efficient. Eventually the scientific

community addressed the containment of a contaminated groundwater plume by

minimizing the pumping as a management tool (Gorelick, 1983; Gorelick & Atwood,

1985; Ahlfeld & others, 1986). "These initial methods for plume management included

constraints on heads, gradients, and velocities but did not account for concentration or

cleanup time in any way." (Greenwald & Gorelick, 1989: 75) For example, Gorelick and

Atwood (1985) demonstrated an optimal containment strategy combining a solute

transport model with a management technique of linear programming referred to as the

simulation-management model that would minimize the amount of water to be extracted

during extraction and injection. However, these containment methods only stabilized the

hydraulic gradient and did not really address the real problem of contamination cleanup.

It was not long until Lefkoff and Gorelick (1985) recognized real remediation

problems faced by both government and industry and utilized groundwater flow simulation

and mathematical optimization as a groundwater remediation tool. Their optimization

remediation goal was to remove a contaminant plume from a hypothetical aquifer in four

years, since design criteria for a restoration project may require a target date for

contaminant removal. An optimal pumping and injection schedule was created that used a

response matrix method, which requires the physical system (e.g., heads, gradients and

velocities) to respond linearly to changes in the pumping or injection (i.e., utilizes the

principle of linear superposition). They assumed purely advective flow and did not

account for hydrodynamic dispersion. The objective function to be minimized modeled

the cost per unit volume pumped and the pumping rate. The study demonstrated the
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utility of simulation-optimization models, however, it also identified the difficulty and

expense of rapid restoration, because large volumes of water must be pumped and treated.

Ahlfeld et al. (1988) proposed two nonlinear optimization formulations designed

to find a pumping system which removes the most contaminant during a fixed time period

and reduces the contaminant concentration to regulated levels at the end of the fixed time

at minimum cost. Their optimization formulations combined advective-dispersive

contaminant transport simulation with nonlinear optimization. To address the concerns of

the decision maker they presented two alternative optimization formulations; one to

minimize residual contaminant in the aquifer and the other to minimize the cost. The

objective functions described were discrete and dependent on several constraints

concerned with either: (1) the objective to remove the contaminant at a given time or (2)

to meet regulatory requirements at a minimum cost. The results of their proposed methods

were reinforced by field studies which indicated that their formulations modeled the

technical aspects of remediation design based on different management perspectives,

again, to either "(1) remove as much contaminant as possible with given constraints on the

total pumping or (2) satisfy quality standards at minimum cost with no regard for the fate

of the groundwater contaminant at unmonitored locations". (Ahlfeld & others, 1988: 45 1)

Greenwald and Gorelick (1989) again recognized the problems associated with the

cost of long-term remediation of groundwater contamination and developed a cleanup

strategy that would minimize the time it takes to removal all contaminants from the

aquifer. They used a quasi-analytic solution for advective contaminant transport in

combination with nonlinear optimization which uses an objective function involving

2-12



pumping rates, injection rates and cleanup time, where cleanup time was either fixed or

ignored. Using an advective transport model and treating cleanup time as a continuous

management variable, they show that the cleanup time will be affected by pumping rates.

Unfortunately, the ability to address complex hydrological systems is limited to the

simulation model which only incorporates advection.

Kuo et al. (1991) introduced a simulated annealing algorithm to address problems

present with current optimization techniques due to constraint equations and nonsmooth

cost functions. Two nonlinear optimization formulations of interest were proposed: (1)

to reduce plume concentration to a specified regulation standard within a specified time

while minimizing cost under hydrodynamic constraints, and (2) to minimize residual

contaminant in a fixed period under hydraulic constraints only. Again discrete objective

functions were used to form the optimization problem with a simulation model that

addressed both advection and dispersion. Different pumping strategies were generated for

different problem formulations. Of interest is that bang-bang controls (i.e., pump-on,

pump-off, etc.) were used to determine optimal pump-and-treat strategies for groundwater

remediation, using the simulated annealing algorithm.

Methods to optimize the remediation of contaminated sites through the use of

various optimization techniques were addressed. However, the typical transport equation

used has been with a simplified advection model or an advection-dispersion equation using

local equilibrium assumptions without addressing the effect of rate-limited

sorption/desorption. Additionally, objective functionals utilized for the various
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optimization techniques were in a discrete form in order to perform numerical analysis as

opposed to an integral form to perform analytical analysis.

Conclusion

Of all the existing environmental problems, water quality issues remain to prove

difficult and expensive to solve where groundwater contamination is still recognized as the

most difficult and important issue to solve (Helsing, 1988:35). The most prevalent

technique used by the U.S. Air Force for contaminant remediation affecting groundwater

sources in the saturated zones involves pump-and-treat. However, this remediation

method has limitations meeting health-based water quality standards, particularly when

contamination involves the sorption of petroleum hydrocarbon constituents. Due to the

tailing affect observed in aquifers affected by rate-limited sorption, pump-and-treat

remediation has been criticized. Again, this criticism revolves around the fact that large

volumes of water are treated only to remove a minimal amount of contaminant not

necessarily to health-based standards.

An alternative method, pulsed pumping, was presented to resolve this problem by

allowing desorption to occur during periods when or while the pumps are turned off.

Current literature is not definitive on the affects of pulsed pumping. Additionally, no one

to date has developed a pulsed pumping schedule that utilizes mathematical optimization

techniques employing rate-limited sorption.

Several optimization methods were also addressed which described work related

to cost effective remediation techniques, but have not determined a proper method for

contamination cleanup due to the inappropriateness of the advection-dispersion equation
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for aquifers where sorption is significant. Additionally, an analytical approach has not

been developed and only numerical methods or quasi-analytical methods specifically

related to the transport equation have been identified.

The goal of the this thesis is to modify an existing groundwater transport model

(Adams & Viramontes, 1993) that incorporates rate-limited sorption and couple it with an

optimization technique using a calculus of variation approach. This will be accomplished

by combining the existing sorption/desorption transport theory with an objective

functional and utilizing a calculus of variations approach. With this general approach,

objective functionals can be varied to accommodate the various management decisions for

groundwater remediation.

This research will provide information and insight into the management of pump-

and-treat cleanup operations at U.S. Air Force Installation Restoration Program sites and

how to best remediate contaminated sites where rate-limited sorption/desorption is

prevalent. More importantly, this research focuses on the development of a pragmatic

groundwater contamination cleanup approach to health-based standards while addressing

the excessive cost of remediation.
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3. Analysis and Methodology

Introduction

Field studies and mathematical modeling have revealed that rate-limited

sorption/desorption can greatly affect the transport of sorbing organic contaminants

(Goltz & Roberts, 1988; Nkedi-Kizza, P., Rao, Jessup, & Davidson, 1982; VanGenuchten

& Wierenga, 1976). Currently, groundwater models used in aquifer cleanup efforts at

U.S. Air Force Installation Restoration Program (IRP) sites do not account for rate-

limited sorption/desorption (Goltz & Oxley, 1990). This can lead to an underestimation of

aquifer cleanup time and premature cessation of pumping to control contamination (Goltz

and Oxley, 1991).

The preferred method for aquifer cleanup (pump-and-treat) has several limitations

including, the persistence of sorbed chemical on soil matrix and the long term operation

and maintenance expense. These problems motivate the necessity to optimize this existing

remediation technology while accounting for rate-limited sorption. Unfortunately,

optimization techniques developed to date have not considered the effects of rate-limited

sorption/desorption.

The objective of this thesis is to create a management tool where a set of objective

functionals can be optimally evaluated for economic, social, physical and chemical

constraints related to pulsed pumping aquifer remediation when contaminant transport is

affected by rate-limited sorption in a finite time. In order to determine an optimal

pumping schedule, a calculus of variation approach is utilized as the preferred optimization
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technique where the contaminant transport equation from Adams and Viramontes (1993)

is modified to examine contaminant concentrations measured at the extraction well.

This chapter will discuss the basic premise of optimization and the calculus of

variations, along with the model assumptions and aquifer characteristics. A generalized

form of the objective functional will be described, the transport equation will be written,

and the optimization problem will be formed. Lastly, the necessary and sufficient

optimality conditions will be given which will motivate the solution to the partial

differential equations describing pulsed pumping.

Optimization and Calculus of Variations

Optimization techniques originally were developed from the field of Operations

Research (Walbridge, 1985:4). They generally identify optimization problems which

either maximize or minimize the value of a particular objective functional while satisfying

certain constraints or restrictions. The objective functional and the constraints are

generally expressed as functions of a set of decision variables (Walbridge, 1985:4). As

noted in Chapter 2, optimization techniques have expanded and been applied to

groundwater remediation problems providing an additional tool to provide an efficient

means to cleanup contaminated groundwater in a timely manner. However, in this thesis a

calculus of variations approach will be considered.

In general, calculus of variations is an area of mathematics which involves

problems where the quantity to be minimized or maximized appears in the form of an

integral. In ordinary calculus candidates for the minimum and maximum values are found

by taking the derivative of the function, say F(x), setting it equal to zero and solving for a

root(s). If the values of i correspond to relative maximum values, minimum values or
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points of inflection with a horizontal tangent then i satisfies the equation F'(i) = 0 (Boas,

1983:383). The equation F'(i) = 0 is a necessary (but not sufficient) condition for all the

values of £ that may be maxima, minima or saddle points (Arfken, 1985:926). Further

mathematical tests and/or the physical description of the problem are required to

determine whether or not a point f yields a maximum, minimum or point of inflection.

These will be appropriately discussed starting with the model assumptions and aquifer

characteristics.

Model Assumptions and Aquifer Characteristics

Since this work extends the work of Huso (1989), Goltz & Oxley (1991), and

Adams & Viramontes (1993), the equations, solutions, notation, and assumptions will

based on their papers.

Aquifer description. There are several assumptions in the formation of the model

used to describe the contaminant transport analytically. Listed below are the simplifying

assumptions used to represent an ideal scenario.

First, contaminant transport is described by steady, uniform, converging radial flow

resulting from advection created by the extraction well. Therefore, both head drawdown

due to pumping and contaminant transport due to a natural groundwater gradient are

ignored (see Figure 3.1). Additionally, the head of the aquifer is constant when compared

with the water movement due to pumping.
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Figure 3. 1. Drawdown assumption around a fully penetrating well in an aquifer
(Huso, 1989: 1-4).

Secoidly, the contamination is radially symmetric throughout the vertical extent

of the aquifer. That is, a fully penetrating extraction well is placed in the center of a

cylindrically symmetrical contaminated region (see Figure 3.2). It is also assumed that the

concentration is finite, and no further contamination takes place from external sources or

sinks of pollutant.

0

0

Actual

Simplified

Figure 3.2. Radial symmetry of contaminant in comparison to real contaminant plume

(Huso, 1989: 1-5).

The aquifer itself is assumed to be a single, infinite aquifer. This means the cone of

depression will never intersect a boundary to the system and an infinite amount of water is
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stored in the aquifer (Domenico & Schwartz, 1990:151). The aquifer also is unconfined

and considered to be of constant thickness bounded below a horizontal aquitard with no

seepage. Likewise, homogeneity and isotropicity are assumed, implying that the

transmissivity and storativity are constants in both space and time (Domenico & Schwartz,

1990:151).

Most importantly, the contaminant transport model utilized was based on the

concept of rate-limited sorption/desorption within an aquifer. This was accomplished by

dividing the porous medium into regions of mobile and immobile water, where advection

and dispersion occurred in the mobile region and an additional equation was used to

approximate the difflusional transfer of contaminant between the two regions (Adams &

Viramontes, 1993:3-2). This first-order differential equation assumes that solute transfer

between the mobile and immobile regions can be described by (Goltz & Oxley, 1991:548):

c9Ci'(r, t) a'it - [C'(r,t)- C'(r,t)] (3.1)Ot 0j,. R.,,

where it is assumed that the solute transfer is a function of the solute concentration

difference between the mobile and immobile regions.

The assumptions made create a simplified aquifer while accounting for the often

misrepresented phenomena of rate-limited sorption and together create an appropriate

transport constraint for the optimization problem.

Class of Pumping Schedules. Due to the tailing phenomenon observed in aquifers

affected by rate-limited sorption, pump-and-treat remediation has been criticized. This

criticism evolves from the fact that large volumes of water are treated only to remove

minimal amounts of contaminant at high cost and not necessarily to a health-based

standard. Therefore an alternative method to resolve this problem is addressed, a pulsed
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pumping schedule, which allows desorption to occur during periods when the pumps are

turned off. With this in mind, it is important to determine the class of pumping schedules

or functions to be used.

The primary objective when formulating the optimization problem is to maximize

or minimize a functional over some class of functions. In this thesis, the class of functions

to be used will be the finite time horizon class,

Let t,•= > 0 be a fixed finite time

Let Q , > 0 be a fixed finite pumping rate

Let C = { Q': [0, tfI] --+ {0, Q. } and Q' is piecewise constant)

Observe that the units of the pumping rate a Q'are [L3/T].

Objective Functionals

Functionals are a kind of function, where the independent variable is itself a

function (Gelfand & Fomin, 1963: 1). Calculus of variations utilizes the functional in order

to find the maxima and minima through a variation of the functional. For this thesis,

several objective functionals will be considered for their practicality. However, for this

chapter a generalized form of the objective functional will be introduced. This general

form can easily be substituted with specific objective functionals which can address

management objectives, such as, minimizing pumping of water while maximizing

contaminant extraction (i.e., optimize the pulsed-pumping method), minimize cost,

maximize net economic return, minimize health and environmental effects, and minimize

the time of cleanup to a health-based standard or federal mandate. By changing the

objective functional one can apply the management tool described in this thesis for

different scenarios.

Additionally, the objective functions described are presented in the form of

integrals as opposed to summations. The first general functional in dimensional form is

written as,
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f" f'(t, Q'(t), C'- (r., t)) dt (3.2)

where

C'(r, t) contaminant concentration in the mobile zone [M/LT]
r. radial coordinate at the well [L]
t time [T]
Q'(t) pumping rate[. 3/T]
tfi.1 final fixed time [T]

and the functional in dimensionless form can be written as,

foIf f(T, Q(T),Cm(Xw ,T))dT (3.3)

where

Cm (X, T) contaminant concentration in the mobile zone measured at the well which is

equal to C,(rt)
0C?

X,, radial coordinate at the well which is equal to rw
a,

T time
Q(T) pumping rate which is equal to Q-'.Q'(t)
Tf., final fixed time

Equation (3.3) will be used as the functional to be optimized.

For this discussion, Q(T) is a function whose values are 0 or 1. Also, due to the

fact that the concentration of the contaminant in the mobile region, Cm(Xw, T), depends on

Q(T) from the contaminant transport equation and its boundary conditions, the objective

functional is a nonlinear functional.
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Constraints

Chapter 2 introduced the development of the differential equations for contaminant

transport starting with the classical dispersion model in cylindrical coordinates and is given

by the following equation (Valocchi, 1986:1693):

9C'(r,t) p OS(r,t) 1 0 9 VC'(r,t) 1 C'(rt) 3.4

S9'r~)~- r ~rD' c5t V'(r)£9(3.4)

Ot 0 [t r r J- Or

where

C'(r, t) contaminant concentration in the mobile zone [MIL 3]
r radial coordinate [L]
t time [T]
S(r,t) sorbed contaminant [unitless]
V'(r) seepage velocity [LIT]
p bulk density of aquifer material [MAL3]
o aquifer porosity [unitless]
D-' hydrodynamic dispersion coefficient [L2/T]

and ended with the dimensional contaminant transport equation within the mobile region

of a homogeneous, radially flowing aquifer incorporating both molecular and mechanical

dispersion

.9C'(rt) 1 a1 Q'(t) 2 C(r t) + Q'(t) roC'(r,t)
Ot Rm (2;r b 0.r +D) r9 Rn.2;r bOm r) d cr

1 1 £C'(r,t) 9• Rm• OC' (r,t) rw<r<o

Rm r Or OmRm Ot

(3.5)

where
a, longitudinal dispersivity of the porous media [L]
D* molecular diffusion constant
C'(r, t) solute concentration in the mobile region [M/L3]
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C'(r, t) volume-averaged immobile region solute concentration [M/L3]
0m mobile region porosity [unitless]
0i. immobile region porosity [unitless]
R. mobile region retardation factor [unitless]
R. immobile region retardation factor [unitless]
Q'(t) extraction well pumping rate [LI/T]
b aquifer thickness [L]

In order to describe the transfer of solute between the mobile and immobile regions

another equation is needed. A common model used is the first-order rate expression

[Goltz & Oxley, 1991:548]:

dCý(r't) = - -(C'(r, t) - C'(r, t)) r. <r <oo (3.6)

where this model assumes that the local concentration within the immobile regions are the

same as the volume-averaged immobile region solute concentration (Goltz & Oxley,

1991,548).

Appendix A extends the derivation of both dimensional equations (3.5) and (3.6)

which provide a more useful set of contaminant transport equations in a dimensionless

form shown below:

,9Cm(XT) (Q(T) D)2 C (X'T)(Q(T) +D' C.Cm(XT) 9Cim(X,T)T =1 +m -X ") •"8 (3.7)

eTx ) 2  x x) lx 9

and

6Cm(XT) _ a[Cm(X,T)-Cm(X,T)] (3.8)
dTm

where the dimensionless variables are defined as

Cm(X,T) = Cm,(rt) (3.9)
C3o
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Cim(XT) - C'(r, t) (310)

XT=m (3.11)

al

T= Q..t2 (3.12)
21rbO a , Rr

and the dimensionless constants are

2,"rba1
2 a•'

r = 
(3.13)

Qm/p

D= 2;r b 0.D* (3.14)
QmaX

6 =M 0n R•(3.15)

With the following initial conditions:

C{(X,O) =Ci(X) for Xw<X<X. (3.16)
0 for X. <X<oo

and

{I for X<X<X(3.17)
C.(XO) = C.,o(x) = for X. <X < oo

where C•o(X) and Cio(X) are dimensionless arbitrary initial conditions in the mobile

region and immobile region and X. = - is some arbitrary finite radius which can
a,

approximate the extent of contamination. Also, the following boundary conditions are

dCm (oo, T)+Cm(@,T)=O and Cm(oo,T)=O for all T E[O,T•. 1]
99X

(3.18)

and

C"n (oo, T) +C,(oo, T)=0 and C1 1I(oc,T)=0 for all T e[0,Tr 1 ]

(3.19)
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where it is assumed that the total mass flux at the outer boundary (X = Qo) equals zero,

since there is no contaminant mass at X > X. initially.

Laplace Transform. In this section a mathematical technique which is used in the

solution of boundary-value problems is utilized. This technique is known as the Laplace

transform, and it converts boundary-value problems involving linear differential equations

as a function of time into an algebraic problem involving the Laplace transform variable (s)

(Adams & Viramontes, 1993:3-2).

A general Laplace solution is derived from the transport equations (3.7) and (3.8)

and combines these equations into one equation. A detailed derivation can be found in

Appendix B. Taking the Laplace transform of equations (3.7) and (3.8), yields

xD+ 1 2) +(D+ I C ,1±--Cm= (XF s) (3.20)

where the overbar indicates the corresponding transformed functions and

C 1+ ') F(X) (3.21)Fm ) =-( s+ a

where F(X) = C0o(X) = Ci•.o(X) and

( +1sa (3.22)
ýs+ aJ

Lagrange Multipliers

In this section the concept of the constraint is introduced, where the Lagrange

multiplier incorporates the contaminant transport equation with the calculus of variations
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approach. In calculus of variations, we want to find the maxima or minima of a quantity

subject to a condition. This is were the Lagrange multiplier becomes useful. Often in

physical problems, the variables of the objective functional are subjected to constraints and

the Lagrange multiplier provides the vehicle to incorporate constraints into a new

unconstrained optimization problem.

For this thesis the transport equation is an equality constraint (as a finite subsidiary

condition) and the Lagrangian in differential form results in

I fT.- f(T,Q(T),Cm(Xw,T))dT+

"T"G[Cm jX T) +f'(Te-)T Cm'0(X) 1
[+,8a 2e-aTJe arCr(X, r) d r .i-JdlC d

(3.23)
where G[C. ] is defined to be the differential operator which depends on Q,

G[Cm](X",T)(- Q(T)+D• O-CmQ+ (T)+ X -- D' -,Cm (3.24)

(L ~ X ) ex, X o

See Appendix E for a thorough formulation of the Lagrangian.

Formulation of the Optimization Problem

All of the elements to form the optimization problem have been discussed and

rationalized. With the objective functionals, constraints, initial conditions and boundary

conditions, the optimization problem can be formulated.

(1) State the problem:

Minimize Q= f f(T,Q(T),Cm(Xw,T))dT (3.25)
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over the piecewise constant set of functions C = Q: [0, tfij] --+ (0, Q= ) and Q is

piecewise constant)

(2) Subject to the constraints

,9Cm(X,T) = ((T+D) d2 C((X,T) 4-/- +D OCm(XT) dC•(XT) (3.7)
OT X ) X2  X ) x -OX dX

and

"C(xT)= a[Cm(X,T)-C,(X, T)] (3.8)
OT

With the following initial conditions:

Cm(X,0) = Cmo(X) = I for (3.16)
for X. <X < a

and

C•(XO)=Ci.,o(X) I1 for Xw <X<X. (.7= =~cX~l o (3.17)
fo for X. <X<oo

And the following boundary conditions

S(oo, T)+C.(oo,T)=0 and Cm(oo, T)=0 for all T E[0,Tf.]
lox

(3.18)

- (oo,T)+Cim(ao,T)=0 and C (oo, T)=0 for all Tc[0,Tf.,]lox
(3.19)
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Necews•ay Optimality Conadtions for the First Variation

Recalling that derivatives give slopes so you may find maximum and minimum

points of y = f(x) by setting dy/dx = 0, we can extend this concept to find the maxima and

minima of functions of more than one variable. For example, if there is a maximum or

minimum point for the function z = f(x, y), then the necessary but not sufficient condition

is that Ox = 0 and __ = 0 whereupon the point may be a maximum point, minimum point
e8x c8y

or neither (Boas, 1983:169).

Often in applied problems we find the maxima or minima of functions of more than

one variable subject to a constraint. To solve such problems we can use the method of

Lagrange multipliers or undetermined multipliers, which is stated below

To find the maximum or minimum values of f(x, y) when x and y are related by the
equation ý(x,y)= constant, form the function

F(x,y) = f(x,y) + ±2x, y)

and set the two partial derivatives ofF equal to zero, i.e.,

'Of Of 'Of Of-+A--=0 and - + A--=0
Oy ,Oy Ox Ox

Then solve these two equations and the equation O(x, y) = constant for the three
unknowns x, y, and X (Boas, 1983: 175).

This motivates the concept of the variation (or differential) of a functional, which

is analogous to the concept of the differential of a function of n variables (Gelfand &

Fomin, 1963: 8). Additionally, this type of optimal control can be related to the calculus

of variations, where the optimal control is a variance of the problem to finding a critical
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point (i.e., minimum, maximum or saddle point) subject to subsidiary conditions as

discussed earlier (Gelfand & Fomin, 1963: 8).

Constructing the first variation. Recalling the Lagrangian in differential form,
equation (3.23)

4QCm,2] = `W f(T,Q(T),Cm,(X.,,T))dT+

TcG[cC]x,T)+fae- T Ci.o(X)
J:oJ 2 [+f,2elaT ;ea- Ce(X,r)d _ Cm dXdT

OT

(3.23)

and noting that the contaminant transport constraint is

QCm(X,T) ( +Q ) D _C. (Q(T) + D t 6Cm _

O9T (X ) ex X RX 99X (3.26)

+.f.i-a T Cm 0 (X) + fla 2 e -aTJT e arC(X,r)dr

or

0 (Q(T) + D 1___C+ (Q(T)+D' OCm_ PaCm
X ) eX2 , X X) Ox (3.27)

+ae-aT CMN' 2 e-aT T arC (v TA £-Cm(X,T)CJ0(X+ C J~e J'oe Cm(X,l-)r- £

where equation (3.27) has six terms which can be simplified by performing integration by

parts on each term (see Appendix E for a detailed derivation). Results in the equivalent

Lagrangian
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f= f f(T,Q(T),C.(X,,T))dT

+f'-EJ.C.(X,T)ý OT axL " x J XL X X)- dXdT

Tf

"-X. (xT)C(x)dXdT
0

-i DCm(oT)I2(00T)+ A(00, T) dT

+f X,., T)'' AX.M T Q(T) +D (- IT) ,T) +Dx.
+JC(f T ) { -(XeT QT)d•o -, "ex" ", x. X. X.)-
-J 2(XTfip)Crn(X,Tfid)dX+f t(x,0) C1 0(X)dX

(3.28)

First Variation. With the Lagrangian in two forms both the abbreviated version

equation (3.23) and the expanded version equation (3.28) and noting that the Lagrangian

is subject to various constraints, we next take the variation of the Lagrangian with respect

to each variable i.e., Cm, X ,and Q starting with the variation of 2 with respect to C.

where:

&i[Q, Cm.,,;O, h,O] = lim- d[Q, Cm + ah, A] (3.29)
da

which is
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&[Q,C.,AO, h,0] = T'o f[T,Q(T),C.(X.,T)]h(X.,T)dT

+f hX,,Tf A(X, •QT) + DX A(Xw,T)LT)+ D) ] _ " (Xw,T)(QT) +dT

+Jhi f h(X, T Q(T X XX XIdXdT

- ,X T(X.T )h(XT, )d

(3.30)

Next we take the variation of £ with respect to X using equation (3t.23). For a

detailed evaluation (see Appendix E).

&[Q,Cm,,;0,0,.,] = limdQCm,,. ""a.] (3.31)

which yields

•[q, Cm,2;O,0,0,] =Jfo- /(X., T)[OG([Cm] + Di- C Ao(X)+ i.2eJe D.(X.)d T-T dT

(3.32)

Lastly, we take the variation of I with respect to Q. This is equivalent to the

derivative of d with respect to time. But first we rewrite equation (3.28) where Q(T)

represents pulsed pumping and Q(T) = when evaluated between 0 <m <(T,, Q(T) = 0
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when evaluated between T, < T < T2, and Q(T) = 1 when evaluated between T2 < T < T3

where T3 = Tfij. Here T, and T2 are variabies.

Define C(' for i = 1, 2, 3 by

(CM)(XT) for O! T T,
Cm(X, T)= C()(X,T) for T <T<_T2 (3.33)

1.C)(X,T) for T, < T•<_ T3

Similarly, define t) for i = 1, 2, 3 by

(A(')(X,T) for 0__ T:5 T,

.•'X,T) = A')2 (XYT) for T1 <T<T, (3.34)

P) )(X,T) for T, <T:5T3

Additionally, in general we define the adjoint differential operator as

2, F(Q(T ) +- __ )-I_

G*[AXXT) =--a2 + (3.35)

Specifically, when the pump is on the adjoint differential operator is

X [( 1D'- [( +1 )

G:,,[AXxY, T) =-ý-I -+ -- q AI-6A (3.36)
9 x [\4 eX [k XX)

and when the pump is off the adjoint differential operator is

-[L -2 [ 0[RAI-aA (3.37)

results in
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£ Tq fT~1,C")(X.,T)]dT- fz ',[T,O,C("(X.,T)]dT+ f'f[qT,1,C(')(X. ,T)]dT

+f~' F' '~~(XT)t9A9 2p T Tf eeat4'l)(X,tdtJe,!2(,)dt~ldd
T [f'Ie-atA.3(X,t)dt +JJ"

J'fC")(XjT){-ý (X,T)+G '0 of [ ]X,T) + az,&A[2feaTA()Xtd +fet(3-d]}XdT

OT f C')(xTIl£92 + d~dt

CmT [~J't2 a2#aT T3 eT,,

T2 X (2)XT) (XT+G~1 DC(X, )(a T)K2)(X,t)d+ 4)(cX, t)ldt d

fTm t)[2(3)(x T)+~ T]d

trip r0 2((1) 2),~ ( D

+jTz T21( ((2))D )2)(Xýk)d

DCn,(o, )'eX(oT + (oTd) -DC (o(,T)() (o ,T) +~ }oT]dT

(3) )[A()(3.38)T

-Taking th vaiton, (ie, ervTive +f wit repc toTeslsi

"+ T C()XT A xI) I+ D +A2/)XaT)I [+. De)-A2 )(X~T)d 1 + dTeV)Xtd}

" T; C(2,-r" &T) q2 X, T) D- GAf[2)](XT,) D a2dIK
2et 2 (xtd

" TC() X,,T IAM(X,,) I-(r~T + D CA(3)(XT) _+ ) ;(3) cX (oT) '2d

A(3) (n l~ +'r. )C')X,)d

33.38



-(2)'X &T 2)DI

(3.39)

Taking the variation (i.e., derivative) of I with respect to T2 results in

= T2,0,C(2)(XT 2)]- f[T 2,1, C3)(XW,T)1

+f C((XT2) {j(2 ) + Gff[A12)](X,T 2) +a2,&6Tz afýe T-(3)(Xtdt(dX
) () + t)dt dX

-•x, C)('"12{ "dT~x + 0G[4J)(x, T2 ) + a/k J
Te: "It,tea'+(3(t)

T2) (2) D (3

+CX.,T2) -• XT)- + a( Te-,) +t •
-DC~(x 2) )[~ 2) (0 1' +0I 2 - ( 00, T2 j D ( ) [ '

+M (wT 9 Xw,T 2  )D )x

C(3) t(3) j(3)(XwT 2) D) _ ((3)(Xw'T2J )l_-•(XwIT2) -9" (Xw 'T2) xW + D- •3Xw ) + Xw,

(3.40)

Application of the Necessary Optimality Condition for the First Variation. Using

the variations of the Lagrangian with respect to each variable (i.e., Cm, X, and Q) we can

determine the necessary optimality condition for the first variation applied to 1. Since the

functional described in this thesis yields a linear functional for the first variation, we can

introduce and utilize the following Lemmas:

Lemma 1. If A(T) is continuous in [ab], and if

J'A(T)h(T)dT=O
for every function h which is continuous on [ab] such that h(a) = h(b) = 0, then
A(T) = Ofor all T e[ab] (Gelfand & Fomin, 1963:9).
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and

Lemma 2. Let R = [ab] x [c,d]. If A(X,T) is continuous in R and if

J'b A(X, T)h(XT)dXdT = 0

for every function h which is continuous on R such that h(xy) = Ofor (x,y) E

then A(xy) = Ofor all (xy) E R (Gelfand & Fomin, 1963:9).

The necessary conditions for optimality to the first variation of I with respect to

C. will be applied. Suppose Cm minimizes I then necessarily &[Q,C.m, A;0, h,0] - 0 for all

admissible variations h.

Case 1.1:

Choose h such that

h(XT) = 0 for all Xe[X., oo) and TE[TI,T 3]

h(X,0) = 0 for all XE[X ,oo)

h(Xw,T) = 0 for all TE[0,TI]

h(x,T) = 0 for all TE[0,Tx]

then equation (3.30) becomes

&[Q, dm,2;0, h,O]
-0 -(X,T)+ G [2 (1)XT)

T'J hc'(T) fT'-a ,2(-)at J(X, t)1 dXdT 0
_#a2 e a/'T fr,+ae~ [~+f, e (X,t) dt

(3.41)

Applying Lemma 2 to equation (3.41) produces the necessary optimality condition,
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-(X T) + GLA Y, XT) + l a ze2ef TT =0

~9T

(3.42)

for all Xe-[X,, oo) and TE[0,T 1 ].

Case 1.2:

Choose h such that

h(X,T) = 0 for all Xce[X., o)) and TE=[T1 ,T3]

h(X,0) = 0 for all Xe[X.,, oo)

*h(X.,T) # 0 for all TrG(0,T 1 )

ho,)= 0 for all Trh[0,T 1 ]

then equation (3.30) becomes

&[Qe ).O,h,o] T .0 .~T, Q(T),CQ)(X,,,T)] h~')(X, ,T)dT

+J'")X,, ýf (-.T +DJ-i)(X,.,T) .- +~- -')X T)}dT= 0

(3.43)

Applying Lenmma I to equation (3.43) produces the necessary optimality condition,

~ (Xxx + ~ =(3.44)

for all T E[0,T 1 ]

Case 1.3:

Choose h such that

h(X.,T) = 0 for all XE[X., ao) and TcG[T1 ,T3]
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h(X,0) = 0 for all XE[X., oo)

h(X,,T) = 0 for all Tc[0,Ti]

h(o,T) 0 for all Te(0,Ti)

then equation (3.30) becomes

&•[Q, Cm,n, ;0, h,0]=- T Dh(1) (oo, T)IA(I) (oo, T) + (oo, T)j dT= 0

(3.45)

Applying Lemma 1 to equation (3.45) produces the necessary optimality condition,

A(')(oo,T) +-(c, T) = 0 (3.46)

for all T c[0,T1 ].

Case 2.1:

Choose h such that

h(X,T) =0 for all T E[0,T,]u[T2,T3] and XE[X., 0)

h(X.,T) = 0 for all TG[T1,T 2]

h(oo,T) = 0 for all TE[T1 ,T2]

then equation (3.30) becomes
8•$2)

- (X, T) + G:. 2)](X, T)
,OT

S0h,0]= Tr (2)(xT2
&Y[Q, t.,'",0, h,] Y-1 •xC)XT)' frTe- ,2) t) dt d T=

"+fla2ee T[JT IL+j'.:e--•')(, t) dt

(3.47)

Applying Lemma 2 to equation (3.47) produces the necessary optimality condition,
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&() T a (2) X, t) d+ Tr0
- -(,T) +G .[,2) (X1T)+pfa2eaTJ e- (2 ( ,tt C at A(3)(x~t)dt]

(3.48)

for all X e [X., oo) and T 4 [T1, T2].

Case 2.2:

Choose h such that

h(XT) = 0 for all T E[0,T]u[TT2 ,T3] and XE[Xw, oo)

h(Xw,T) # 0 for all Te(T1,T 2)

h(oo,T) = 0 for all Th[T1 ,T2]

then equation (3.30) becomes

&[Q,tm,;Oo,h,O] JT2 .[T, Q(T), t.(X- T)] h 2 (X- T)dT

+Q h(2)(X.,T)6-2-(X.,T)D- ý2)(X.,T) -R-}dT = 0

(3.49)
Applying Lemma 1 to equation (3.49) produces the necessary optimality condition,

'f[T,Q(T),t(()(X,,,T)]+D {d (X.,T)D- A2)(X.,T) D 0 (3.50)

r all T E[T,,T2.

Case 2.3:

Choose h such that

h(XT) = 0 for all T r[0,T ] U[T2 ,T3] and XE[Xw, 00)

h(X,,T) = 0 for all TE[ThT2]

h(oo,T) # 0 for all Te(T1,T 2)

then equation (3.30) 6ecomes
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&[Q,~, t A;O, hO]= -f' Dh(o, T) oT)+--+ -(ooT)}dT = 0

(3.51)

Applying Lemma I to equation (3.51) produces the necessary optimality condition,

gA(2)
P) (oo,T) +- (oo, T) = 0 (3.52)

for all T E[TIT2].

Case 3.1:

Choose h such that

h(XT) = 0 for all X e [X, ,oo) and T [O,T 2]

h(Xw ,T) = 0 for all TE[T2,T 3]

h(oo,T) =0 for all TE [T2,T3]

h(X, T3) =0 for all X E [X, ,,)

then equation (3.30) becomes

[ ](3)
-T ® • / @-(X, T) +G. [A( )]X,T)/

&4[Q. Cm' "0, h,0] =,J h(.)(X'T)i -T -T)]T. LdXdT:0
K+pa" feaJ e-zt2T3)(X,t)dt ]

(3.53)

Applying Lemma 2 to equation (3.53) produces the necessary optimality condition,

-T (X,T) + Go[' )](X,T) +f6a e"Tf' e-'t 3)(X,t)dt 0 (3.54)@9T

For all X E [Xw ,oo) and TE[T2,T3].
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C•ase 3,2:

Choose h such that

h(XT) = 0 for all X E [X. ,') and T c[OT 2]

h(X.,T) * 0 for all TE(T 2,T3)

h(oo,T) = 0 for all TE[T2,T 3]

h(X, T3) = 0 for all X E [X. ,oo)

then equation (3.30) becomes

4[Q,eC,. 2t;0,h,O] = -of-T, Q(t), () (X,,,T)] h(3)(X , T)dT

T+ (3)(XT { -(xe, I+
+['•r h 3("T '9A(3)S (X,,,T)•- +,X D•- ()(X.,T)"- +• A(-X,'•<)(X,,'T)x--2 }dT=0

(3.55)

Applying Lemma 1 to eýquation (3.55) produces the necessary optimality condition,

{t3) (Xw T)(I+ D)}=0
19- _,3)(XwT)( I + Dw A)- ((X",T)2

(3.56)

for all T G[T 2,T3].

Case 3.3:

Choose h such that
h(XT) = 0 for all X E [X,,,oo) and T E[0,T2]

h(X,,T) = 0 for all Tr[T2,T3]

h(oo,T) • 0 for all TE(T 2,T3)

h(X, T3) =0 for all X r [Xw ,oo)
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then equation (3.30) becomes

,&[Q,t:m,)]O,h,O] h()(o -•I'3 (00 T) + OA3)

(3.57)

Applying Lemma I to equation (3.57) produces the necessary optimality condition,

A(3)(ao, T)•+ -(c, T) = 0 (3.58)

.OX

for all T r[T2,T3].

Case 3.4:

Choose h such that

h(X,T) = 0 for all X E [Xw ,oo) and T E[0,T2]

h(X.,T) = 0 for all TE[T2,T31

h(oT) --0 for all TE[T2,T3]

h(X, T3) • 0 for all X E (X. ,00)

then equation (3.30) becomes

&[Q,'•m, 2O, hO] = -- ] 3)(x'T3) h( 3)(x'T)dX=o (3.59)

Applying Lemma 1 to equation (3.59) produces the necessary optimality condition,

A(3)(,T3) =0 (3.60)

for all X r [X.,00).
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The necessary conditions for optimality to the first variation of I with respect to A

are now applied. Suppose A% minimizes I then necessarily &[Q,C=,i%;0,0,P]= 0 for all

admissible variations p.

Choose p such that

p(X,T)=0 forall XE[Xw, o) and TG[T',T 3]

then equation (3.23) becomes

=f +pa2 e oaT T eC)(X,r)d dXdT=0
(:•[Q,~ ~ ~ ~~X u( ;,0/]• ') (x )X, T) +o~-TZ~

.C )(xT)
OT

(3.61)

Applying Lemma 2 to equation (3.61) produces the necessary optimality condition,

G[C?']X,T)+p6a'e-aTT fT e' CO )d )(' d z0 (3.62)

for all X r (X., oo) and T e (0,Tj).

Choose p such that

p(X,T)=0 forall XE[Xw,oo) and T G[O,T,]u[T2,T 3]

then equation (3.23) becomes

3-28



CT] 2  +fPa2eaTJ T ear C()(X, r)dr&[Q, C., ý;0''/O =•, P x] )(2,YT) +,a' fJe
0 M dXdT =0

-C (XT )
OT

(3.63)

Applying Lemma 2 to equation (3.63) produces the necessary optimality condition,

G(C•)](X,8T)+fa2e-T •oe r C)(X,2r)d - gC)(X, T) 0

9T
(3.64)

for all X c (X,, oo) and T E (T1,T2).

Case 3:

Choose gt such that

Ay(X,T)=0 forall Xr[X,,oo) and T [0,T 2]

then equation (3.23) becomes

[C(3 ](X, T)

T T)•[QCm'•O0'/]= 'T •xP(3) (XT),6a 2 e- foe C('rd -r dXdT= 0

8T

(3.65)

Applying Lemma 2 to equation (3.65) produces the necessary optimality condition,

G C•(X, r)d e- e Cm(X'T)=0
OT

(3.66)

for all X r (X,, oo) and T E (T2,T3).

3-29



We now have the necessary optimality conditions for all cases when applied to the

first variation of with respect to the functions t,, and A. Observe that if Q(T) is a given

admissible pumping schedule and Cm(X,T) is a corresponding solution

&[Q, m.,.;O,hO]=0 for all admissible variations h, then , satisfies the following

partial differential equations:

0A (Y), - -g(X (X Q(T)+D)] _ "_(XT)(-T+_D

-9T ( 6X+ x Jj X (3.6 7
a PeaT Te. A(Y(,t)dt= 0

for all XE (X.,oo) and for all TE (0,Tf. 1), and the following boundary conditions

6- [T,Q(T),(X,,T)]
+1 ýA, X,. T) Q(T) +D A(,,T)(Q(LT) + D A-,(X.,TQ(T) 0

(3.68)

for all Tr [0,Tf,•1] and

A(00, T) + -(00,T) =0 (3.69)

for all TE [0,Tfi. 1]. Also X satisfies the terminal condition

•(xg•) = 0 (3.70)

for all XE [X,,,00).

Additionally observe that if &[Q,t,•2;0,0,p] = 0 for all admissible variations g

then tm satisfies the following partial differential equations:
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+,a--T 2 -aT •r•'
G~ji.ý,+ae +C•a e " Ce (X, r)d r-

for all XE (X,,oo) and for all TE (O,Tf 1).

Lastly notice that the variation of I with respect to Q is modeled as the ordinary

derivative with respect to T1 and 1T2. Observe if T1 and T1 yield a pumping schedule Q(T)

which minimizes I then a [T'1T 2,Cm'X] M 0 and T ['1,, 2,Cm,] = 0 become

q : ,tIT,) .(x.A ,)1- ft, &)(~)]
2(3.72)

-(=)(X.T, t f [Tl,., (x'(X,.,", t]]+ (l)(X., T• Of [(3.72)

and

=9T 2 r - f)(3.73)

2'l+ 3) ,T'2)] 0
-{2)( Xw,,, 'If2 ) [j•2,0, (•2)(X,, 12 )] +t(3)(Xw,"'j2 'Of [i.,,j ) w'i2)

In order to solve for both T and T we must first solve for the concentration
O9T, t9T2

of the contaminant at the well, Cm(X,,,T). This necessity motivates the need to solve the

sorbing solute contaminant transport equation. Specifically, the partial differential

equation for when the extraction well is on and off needs to be solved. Notice that

equations (3.72) and (3.73) do not depend on X, consequently there is no need to solve X.

Governing Equations and Solutions

This section extends the theoretical development of the differential equations for

sorbing solute contaminant transport and presents the governing equations and solutions

for sorbing solute contaminant transport for conditions when an extraction well is turned
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on and when it is turned off These equations follow the assumptions developed earlier in

this chapter. A detailed mathematical analysis can be found in Appendix C (Well-on) and

Appendix D (Well-off).

Model Formulation: Extraction Well On. The Laplace transform of equation

(3.20), together with the appropriate boundary and initial conditions results in a single

differential equation, including the assumption that molecular diffusion is negligble while

mechanical dispersion dominates yields

I 02 C . 1 dc m,
-YE X + X (3.74)
Xe9X X OX

where the overbar indicates the Laplace transformation of the function. Multiplying

through by X results in

ICm + C-" X' Cm = XF(X,s) (3.75)Jx 2 £ 2X

Assuming the solution of equation (3.74) has the following form

Cm (X,s) X, s)e 2 (3.76)

then substituting this equation into equation (3.75) yields

dX2 Y X+- IO=el2 XF(Xs) (3.77)
L 4yJ

Employing the change of variables

Y = r'[X+ , X and c(y, s)= O(X, s)
Y ,3

leads to the following equation
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Sy y 3 F Yw <Y< 00 (3.78)

dy2  4?

see (Adams & Viramontes, 1993) pages A-64 through A-65 for derivation and rationale

for variable change. Subject to the following boundary conditions, again see (Adams &

Viramontes, 1993) pages A-65 through A-68 for rationale and derivation.

1 jd+l(y3_ 0 (3.79)

2 dy

I ~ d D(oo) 0-(o) + rl d =) 0 o(3.80)
2 dy

Equation (3.78) has the solution in the form

4(y,s) = g(y, rs)Y(rI,s)d27 (3.81)

where g(y, 17, s) is the Green's function given by:

g~~y~r/,s)= I"[ (D2](77)y<!<

9(Y, (17)D (Y) (3.82)

W[1 ,1 2](rI ) YW 0210Y

where W[D1 ,c, 2](Tl) is the Wronskian of 4D1 and 0 2, and DI satisfies equations (3.78) and

(3.79) and 02 satisfies equations (3.78) and (3.80).

To find the solution to 0 1(y) we apply the boundary condition at yw, which is

equation (3.79). Solving for (DI and applying the boundary conditions at yw yields:
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SG[Ai] B~•
01(y) = A Ai(y) - i] "l (3.83)L G[Bi]

where

i !dAiG[Ai]=-- Ai(yw)+) yl (yj) (3.84)

2 W dy

and

G[Bi] _1 • dBi
G[Bi B(y=)+y3 -- y.) (3.85)

2 W dy

where Ai(y) and Bi(y) are Airy and Bairy functions, respectively (Abramowitz and Stegun,

1970).

To find the solution 0 2 (y), we apply the boundary conditions at y = ao which

yields:

(DAY)= CA i(y) (3.86)

and the value of the Wronskian becomes

E G[Ai] l(387)
w[Ct~C2]()=AL G[Bi]_;J

Substituting into equation (3.82) the Green's function yields
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gA,~ Aiy-[GL]BiJ (3.88))

AC[G,11, I

G[Bi] x 1 A4(Y 37 [iG[Ai] Bi&)(Y?) y~i7<) (3.89)

G[Bi].1

4A~i(I) G[i]- Bie,) Ai(y) y,,•517:5y (3.90)

Through a manipulation of variables C. (X, s) becomes,

1-xp-- -4-

see (Adams & Viramontes, 1993, pages A-77 through A-78) for a more thorough

derivation and explanation. The nonhomogeneous boundary-value problem has the unique

solution

4D(y) = ;r G[BI]Ai(y)JY A i(77)J(q,s) d 77 - ;r Ai(y)fy Bi(t7)J(7, s)d;
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Combining equation (3.91) and (3.92) results in the solution

G[BiI{] x ± Ai3r3( ]2C F(4,s) d
GBi] + 1 x 4y)

+ Ai y3

+ -'F 4,s
-A Bi'r(X +1]J i[r1(j+i1)]e' (, ~

fie 2. -3 1 -

+9 • Ai Y X+ Ai 7 , 4+ e 2 F(4,,s) d2

(3.93)

Solving for Cm(Xw,s)at the well results in the following equation where the first and

second term in equation (3.93) are zero at the well.

UM(X",S)=YW r 3 Ai(yw) - ilr 3 4+- 2 F(•,s)d• (3.94)

which yields the following solution to Em(Xw., s) in the Laplace domain:

Cm(Xw, S) = eAi2 Q r3 (+i)]e2 F(4,s)d (3.95)

Model Formulation: Extraction Well Off. The Laplace transform equation

(3.20), together with the appropriate boundary and initial conditions results in a single

differential equation, including the assumption that mechanical dispersion is negligible

while molecular diffusion dominates yields
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Dý m +--DO C.=_ (X s) (3.96)

where the overbar indicates the Laplace Transform of the corresponding functions.

Multiplying through by X/D and defining the

-(X,s) = D-'F(Xs) (3.97)

and

= Dy (3.98)

results in the differential equation

gx +m c m XjCX3=x(,s) (3.99)
192  9X

Assume the solution to the differential equation (3.96) has the form

Cm(X, s) = O(X, s) (3.100)

Substituting into equation (3.99) yields:

xd 2 O(X S) + d X(Xs) _TO s= Xj(Xs) (3.101)
dX2 dX

Defining the new independent variable

y=• 2 X (3.102)

and the new dependent variable

(1(y, s) = q(X, s) (3.103)

and dividing equation (3.101) by y2 becomes
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d2 04(y,s) I d O(y,s) _)(ys)= I ,s)=-.(y's) -- 1-'-?(,5=~( s=¶~ys (3.104)
dy2  y dy r T

on the interval yw < y < oo.

Looking at the Laplace transformed boundary condition at the dimensionless well

radius (see Equation D.5, Appendix D) and converting it into terms of yw yields:

dcD Ss)=O(3.105)

where

yw = 2 XT (3.106)

The boundary condition at infinity can be rewritten in terms of y = o as

!1 d1'72 - (0, S) + (D(oo, S) = 0 (3.107)
dy

since

y = x(3.108)

then as X --+ oo, we have that y -- oo.

To find the first solution, 0,(y,s), we apply the boundary condition at the well

(equation 3.106) which yield,

41 (y,s) = -K'o(y)Io(y) +I'(y.) Ko(y) (3.109)
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where L,(y) and K,(y) are Bessel functions of the first kind, order zero and third kind,

order zero, respectively.

To find the solution, )2 (y, s) we apply the boundary condition at y = a (equation

3.104) which yields

0 2(y, S) = DKo(Y) (3.110)

We now seek the particular solution to equation (3.101) using a Green's function

which is of the form:

W [1,,)02](77) Y < 7/< 00
g(y7,, s) W[=( (3.111)

WD I 2 I() Yw <r)/ <)Y

The Wronskian of (D and 0 2is denoted by W[4D,,2](fl) and is determined to be

I1 K'(yw) (3.112)
y

Thus the Green's function becomes

JI'(y. ) K oky)- K'(yw) I(y)]Ko(q)

Ko(yw)
9(Y, 17 s) [4'o (y w )K .o(q/)- 0K'o(yw) Io (r)] Ko(y)

K'o(Yw) Y. _<r/<y

(3.113)

The general solution to equation (3.104) is of the form

4)(y) = fg(y, q, s)*(q, s) d 7 (3.114)
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I i I

Since y=F2 X, then 17=y 2 and d/=j7 d 4. Thus equation (3.114), together with

the right hand side of equation (3.104) becomes

cD(y,s) = 7(2 , 2,s J•, 2d (3.115)

,2 2 •d4s F(,s)"d• (3.116)

Since T,,(X, s) = 6X,s) and D(y,s) =(X, s) then

Cm(XI s) = 2g(y' X 4,sF(•,s)d• (3.117)

If we define
b(X 4.S)- = 4 2x,T7 , (3.118)

then

m(X,s) = f X,,s)F(4,5s)d (3.119)

Substituting in the constructed Green's functions (equation 3.113) using equation (3.104)

yields

(D(y) : K-• .(oy)fy i7Ko(q/)J* 7,s)dq7-Ko(Y)" r7Io(i7)J*(?7,s)d r/
_ I(yw) Y y

+ K oy)°Y*K~)rKo(r/)J*(i/,s)dq/-Io(y) Iq/Ko(r/)J*(rs)d r (.10

Therefore,
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(m(X,S) -ZoK 2 XJJýIor 2) F(ý,s)d4 (3.121)

Solving for Cm(Xw,s)at the well results in the following equation where the second term

in equation (3.120) is zero at the well which yields the following solution to ?m(X.,,s) in

the Laplace domain:

W I S f4K. F(4,s)dý (3.122)
XwKo 2 X

To determine the concentration at the well in the time domain we need to perform an

inverse Laplace Transform of Um (Xw, s) in (3.122). That is,

Cm(Xw,T)= t , 2K 2 F(, s)Jf (3.123)

Necessary Optimality Conditions for the Second Variation

Utilizing the procedure to determine the necessary optimality conditions for the

first variation of £ shows that we have a candidate for an optimal solution, however, it

does not state whether or not the optimal solution is a maximum, minimum or neither. To

address this issue the concept of the second variation will be introduced and utilized.
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The concept of the second variation expands the first variation, where the second

variation is generally denoted as 52J[y; h], where the functional J[y] is assumed to be

twice differentiable at 9 along the increment h (Gelfand & Fomin, 1963:99).

Second Variation. With the first variation determined for the Lagrangian with

respect to each variable, C., X, and Q, the second variation can be determined in order to

determine the necessary optimality conditions for the second variation, which is defined by

the following theorem:

Theorem 1. A necessay condition for the functional J[y] to have a minimum for

y = 9 is that ( 2J[9; h] > 0 for y = 9 and all admissible variations h. For a

maximum, 25J[9; h] <0 (Gelfand & Fomin, 1963:99).

Referencing the first variation of £ with respect to X in the direction of pt (see

equation 3.30), it is easy to determine the second variation of I with respect to X in the

direction of g. which is,

•2.•QC ,•;0,0/.1 .I d2

2QCm .. %0,0pU] = lim--- 2[Q, Cm,A A ap] = 0 (3.124)
a-3-o 2 da

Additionally, utilizing the first variation of I with respect to C. in the direction of

h, equation (3.30), it is easy to determine the second variation ofI with respect to C. in

the direction of h as,

42 C,;0, h0] =lim--4I d Q,C+d ah,2] 2 df- T,Q(T),C, (Xw,T)] h 2(X,,T) dT

(3.125)
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Unlike the previous derivations the second variation of I with respect to Q is

more complicated and can be evaluated by examining the variation ofI with respect to T,

and T2. First the variation of I with respect to T, is accomplished by first referencing

equation (3.39). In fact, this is just the second derivative of I with respect to Ti.

'OT12 OfT I ) + mfT9C 1 OT

99f 0 ,'(XT(2)) + e [f re".,- 2 )(X, t ft + feat2(3)(X,

[(X,'T)] ,X2 FoL(TX( IX,T4)V t • ¢ , : 1 • T a M L" x Oj x Lx

+d/-a ) (Y(X, T,) + a3T,"J[fT1 e et(')(X,t)Adt+fTeat,'!3)(X,t)dt] d

-•-•- t9C)+mx( I OT' TX "t1 x +D -•L-X - X) ]

+x C9)(X'T,) -Ifla-T(X'T,)+a 3peaTr [f'e- CtAP)(X, t)dt +T3 e-a A(')(X't)dt dX

-a 2fta,[le a,(2(X,T,)]

49A)(2) 492  2) F£A(2 ) (y

'9C(2)(XT)+g 2-A2(XTj)D]-- d-xJ 1  D
f 9 2 C(XT,)X 9T OR I d XLX)T XJd

O..(T /_p-f3a (X, T,) + a 2,6eaT T era, 2•()(X, t+ T _o,,•(')(Yt)dt

-lc(xT LrTz dt]T

UT1  t.A) Dt
-DD m r TI) -_]SOX2 OxI m9

C()( T _a q(2) 3 &aTtlT aTA()XT aA3

-JX, CM(LT) -fa•-(YT)+a If• e- t('( t) dt + ,f e- '•') t) dt] d

£97 L 1 £ X [9T L9£9 J
+a '62 aj[e ',A(24,)]

19),.C.( 1)T1-D M(00,T) ') (, )+- (oT) -DC(1(OOT')- -(,T) X T
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{T ex~9 IT OXT XI~T'

gC(2 d2) 2

c'(xW,Tl)IO -- T-(Xw,TID T(WT)X, (3.126)

Similarly the second derivative of i with respect to T2 is,

g9 2  = f T 2 , , ( ) X , T ) + I [T290CL2 ( w T ) ] ý X ,

'OT2)

'O T,,(2 ) -(X,,",] I T2 ,1 () + T2 X) ] -1I 2(XW ,T2)IT m1 9 2 [,2)x IT X

022(2) __2 [A9[£9,% (2) Dy
(2 (,T,) + gX , D) 2) D_

_,a2(X, T2 )+a 8eXT 2 ) -e9 -a

+f C(,T 2 , -fi . 02(OA2) +0 eAalf ~~~(x,) dXt2 D
a/3a2 (eaTz()+g (X, T2))-

7 (xT2 )£ Ox2  OXI XTJXd
+Jw-/)X3j A23(X2) + laT2 k Tz P At,3) (X, t) dt

C~(xT~2 eaT2 (XT)+9 [A(3) (X 3T{ D][LxT)

-(3) - (X, T2 )+ a3 e T 2 +) D ' (e+a)],

I~~~~~~ e9 fTaýa))x t(+a 2 6"
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-D C-2), T2 2(,T2)+ 6A2) (, T2) 2 2) g 2)

+ O'--('TOx f OT) (0TO)+ dX 9T (19 'T2)]

+ 2' £9•) T -,,) - 2(( ) - D-
+C~~2T -jt9 OX OT,OT~ I Ox I 3 (D~ f3)1"+ (X.T) I T- (X, T)D- (XTT2)+- 2(XT.,)) D

OT W 9x x j
"T" { .,T 1 _f_ " 1--

-CT)(XW T2) (X.,T2  X - (X, 21(.x + D ) £9T,"2) (D

(3.127)

Application of the Necessary Optimality Condition for the Second Variation.

Utilizing the second variations we can determine the necessary optimality conditions for

the second variation of £. For the functionals considered this thesis, the second variation

yields a quadratic functional, hence the following lemma will be of use.

Lemma 3. If A(T) is continuous on [a,b] and if

fa A(T) h2(T) dT 2L 0

for every function h which is continuous on [ab] such that h(a) = h(b) --0, then

A(T) > Ofor all T E [a~b].

The necessary conditions for optimality to the second variation of I with respect to

C. are applied now. Suppose Cm minimizes I then g2£[Q,'CA;0,h,0]=0 for all

admissible variations h.
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Choose h such that

h(X,') 0 for all T e[T1 ,T3] and X c [X.,oo)
such that

h(Xw,T)* 0 for some T r [O,T)

then equation (3.125) becomes

6 •[Q, C,,, ;Oh,O]= - T, .1 T,Q(T),t1)(X.,T)Ih "(X.,,T)] dT >0 (3.128)

Applying Lemma 3 to equation (3.128) is a necessary optimality condition,

-[T,QT),&) (XT)] Ž0 (3.129)

for all T E[0,T,

Case 2:

Choose h such that

h(X,T) = 0 for all T E[0,T1 ]U[T2,T3] and X E [X.,o)

and

h(X,,T) # 0 for some T c (ThT2)

then equation (3.125) becomes

02 dfr t(2) (ý 12- T, Q(T),)X T)lh(')(X.,T)] dT> 0

(3.130)

Applying Lemma 3 to equation (3.130) produces the necessary optimality condition,

2 f [T, Q(T), &') (X", T)] >: 0 (3.131)
.OC2

for all T E[T,,T 2].
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Case 3:

Choose h such that

h(X,T) 0 for all T e[0,T2] and X E [Xw,ox)

where

h(Xw,T) # 1 for some T E (T2,T3)

then equation (3.125) becomes

62jQct';Oh,] =TJTI-•- [T Q(T), w, T)Ih 1)(X.,T)] dT >0
(3.132)

Applying Lw.ema 3 to equation (3.132) produces the necessary optimality condition,

S[T, Q(T),&I(X,,T)] Ž0 (3.133)

for all T E[T2,T3].

Notice from equation (3.23) that the second variation of £ with respect to X is

zero for all cases. Therefore, we apply the necessary conditions for optimality to the

second variation of.I with respect to A.. Suppose Cm and A. are admissible and minimize I

then (521[Q, t.,ý;'0,0,] = 0 for all admissible variations g.. Additionally, note that

equation (3.126) and equation (3.127) become

"f FTT'&)X"T) o t ( T •O)(XWTj)]

gT,2  OT OTL
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O2kZ) d2 01() Ml~2 D
(X,T,)+.O2 - XT + ,, -

OT' OT x X dT X

-f t~)(TJ -fia-(XT)+ae-f (XatPdt]

x. ) +T a&~ T, Je~!)X t) dt + Je -t2)(Xt) d1

~a 8eaT! -eaT,12)(X,r1 )

OxT on eXCITT

ate29T~t T aXc9T(X
-fi (Y~,T,) +1) T -e t td

O9 ~T 9T eT''X

D& )00 I .2) .0 2)

-D-- (3.134)Tj
m9 OT(0,J,

andO

2) A ( 2) 2  I9 (X , [, OTT X2

+7~~~~~~~~O I~xT)-i(,2  a~eT2'1t' X [T2&t~(~)d] X

a2 GaT2 (eT2ý.(3)(x,,)
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(X9T2 ) (XT XT('T)--D]d-f <, -T,' "=L - - ' Oxt,• )- - - -' x xxT,+ x

fida 3X, T2)+'6" JTe- alt)(X, t)dt - az/iar2 e(&aT2k(T)
-F.• ; . L_ 1 1

ac 9) a(2•) 0 (A(2)

+D(I o IT) -- -(00, T2)+ OX IT (0,T)

+t(2) AT O(2)(X),{)-)T D&}

((, •. T 2  - --( XTD2) • "_

'0 )LL+DI A(3 I D)k (X. T,T4
X TX OT ( ) + 9T XX.x) IT X,,

(3.135)
Notice that if

F(T) = 2(, T) + (oo, T) = 0 (3.136)

Ix

and since L satisfies the boundary condition F(T)=0 for all Tc [0,T 3] then

dF = 0 (3.137)

dT

Then for T • 0, T1, T2, or T3 the differential equation holds true

I-- (-X-,,• [ "x ,T)(Q(T) + D)- -xl Xw(XwT)•Q(T)--+ •-)-•(X, ,T)-Q(T)]

I -c [I 'IQ(T), t.(X,,,T)]]

IT O CJ (3.138)

- -TE-9C [T, Q(T),tm(XwT)] tm(XwT)

-{JI-€-f[T,Q(T),m(Xw,T)] jC (X, T,)(t(X, T)

IeC 2 L e9T ~rI~~

Equations (3.134) and (3.135) now simplify to

01 'Of II,• ( w, ,] [f Tý',0, 2)(Xw,T,)]

19T-
2- = T"T .
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.6T2 X) LýX2 --ý-(9IGO T Gx,)

+f ~(,T -fa (9T)+ aieTI[ aKk (Y.,t) dt + £3 ea(t2()(X~t)dt] dX

g92ý2) d2 dAk2 )_ Dl
~9X 'T 9T)cXL c;T(xT)

-f O~XT faXT 1 )
5 ~+ a31 [y~l eat2)t)dt + k ea,(3) (X, t)dt] d

+9t2 l( '0T 2  f dTL

m22 w2 *,,2 TI r 5TT D

+fOC[(x,, -/Qa(,T 2  +a)]e e-TC--T,Q)XW, t) dt- dX""

-a)( .,j 'IaT(eT,3)X,

Iz M+[a2fraT2 JT 3&at231(xdf [T

] - 2 ,OCm(XwXT2 )

+~)(x~T2 ){ (Xc~ T2 ),OX2m(XwT 2) (w- 2)
,OT OT 9X i6TT

&2)(XTj _,6a(XT2.Oi( 2) 3 -50T 3 t(3(



_ _6T O oc 2 1 (T M .2) IC ( T 2)l

(3.140)

Notice from the first variation of i with respect to C (see equation 3.67) that

giliG[ a2 ea f~we a*,t =0(3.141)
OTT - aL (Xtt0

So taking the derivative with respect to T yields

G*+ a [,&T ek -at I(X., t) dt - afi2(XT) = 0 (3.142)

Evaluation this equation at T =T, and T = T2 and plugging into equations (3.139) and

(3.140) gives

-T1 -OT [ , 1,c&M W(x l T
+fT t(9(T a L 1 j

+f 2(XT1 {a 2flA2()(XTj )dX

+&)( g~XTi{2 f 02( fi}d

_t2( {,l -ý f o [T , 1 02 I - [T1 ,,o t()X~ji)]'ý;(Xw'TI)}
(3.143)

and

£9T22Mr
OT OT2 (x T2){az/32(2)(XTz)}

-fO &)(XJT{2,6A2() ( X,T2)}d
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+d(2)i'XT2f c 9 f.. 2  2'' m (X.,T,)fýXI2)1~M OT£9CL2 MXwT] --- [ OC2 ~ M OT
c)_ [T£9t3(X, 2]_01f_

(3.144)

Notice that V)' (X,, T) = (2 (X. ,T1) by continuity and similarly XV21 (X ,T) V)

(X.,T2). Equations (3.143) and (3.144) simplifyr to become

0~(w1*;{ Of )(.,TcLI f[T,o,)x,&2) I 2 T1¾,mXwT] (X]

I= [TI

/tl(X,,,, [i'2,o,ct(xM,)(T2)] - Z[roC(XT)2~(wT

_t()( .,j) - ' [T 2 ,1,(2)(X",T 2 )] C? [. 4 2 10, t(2(X. ,T2)] Z (x-,T 2)}

(3.145)

BondayCnios

01 [ 2  [~t3)X ,QT2)]_ 02fX T,1T3)]ŽO ,T)]ý( 3.147)

-& rn')( X IT2)1 - T O C 3-5 2 Md



for all Te [0,Tfd]

Lastly, notice that if tm minimizes ! then the second variation of I with respect to

Q evaluated at C. implies A) 2, 0 (for i = I and i= 2). Hence by ordinary

calculus equations (3.145) and (3.146) become

= eIr " ' [] f , ,(x,, •)]
,9T12  £9T L1 T

MT I-"TO e,--,OT,+~)(X~ti){ £ [i-,l,€•(w,t,,)] •f" :(,)~ j"]9)]._.wf. i()}

_&)(xW"i"){ 'c [i O, (X~I 1 - C9, [j '(.(X.'rx i)}Ž0'

(3.148)

and

d2 = f [j"' &2)0 (•)Xw,'2 j]D '21 •(w ")

,9T 2
2  OT t M  wJ OTL

2) j2''tI)XW [.2'tlo 2) (xW,•3 j2 cf! (x., j2)M f [T' 'C(X 2)]- gf C2+e•x.I-O)TOC O2-- , ,,OT

-~)(& ) [i 2 ,&,•)(X,,, 2)] g2 f [2 f i 2"(xl ') i) 12] ) (x" Ž0

(3.149)

Sufficient Optimality Conditions

Utilizing the procedure to determine the necessary optimality conditions for the

second variation of I it was shown that if the functional 4Q,Cm,2] is to have a minimum

then certain quantities were nonnegative, was a necessary condition but not a sufficient

condition. To obtain a sufficient optimality condition the following theorem is introduced:

Theorem 2. A sufficient condition for the functional J[y] to have a minimum for
y = ý. given that the first variation &J[j; h] vanishes for all admissible variation

h. is thct its second variation 62 J[; h] be strongly positive. That is,
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62J[9; h] > kIlh[I2 > Ofor all admissible variations hfor some constant k > 0. For

a maximum, g2 1[9; h] 5 kIIhI 2 < 0 (Gelfand & Fomin, 1963:100).

Suppose the first variation of I is zero for Q, Cm and 2. Suppose further that

..Cm and 2 satisfy equation ((3.147), (3.148) and (3.149). Therefore, 6V2 strongly

positive implies from equations (3.147), (3.148) and (3.149) that

a, f (X,]
C7[T, (T), (XT)] >0 (3.150)

for all TE [0,Tf.,i] and

a I f 'I^ ) f & 2 (X""

g -•2 O[T [,, OT (x.,,)]-o

&)c,{C m & (X.,

&2) 61 f [i &2)(X";)] 02 f [" 0,m(XW I)] ý (Xl}) 0
M •(X,,,JF)I-T9 M fC [M,0 d

and (3.15 1)
and

'C 2 ) {, _ [Of,0,i) ] & 2 X f2) Of ) 9C)

dT2 T •C , -O[To co (x&3))]-• (x2

M 8TOC M C2t M O'"• T •' 2

(3.152)

Summary

Within this chapter several issues have been addressed to ensure that the physics

and mathematics utilized correctly meet the objective to create a management tool which
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will determine an optimized pulsed pumping schedule for aquifer remediation when

contaminant transport is affected by rate-limited sorption/desorption. A calculus of

variation approach was discussed briefly along with the aquifer characteristics and model

assumptions. It was discovered that the class of bang-bang schedules required was not a

convex set for the operation of the pumps. Additionally, an objective functional (in a

general dimensionless form) was introduced to satisfy the management decision tool

which addresses the pumping rate, contaminant concentration, and time variables. The

development of the differential equations for contaminant transport were also modified.

Anticipating the need to solve the differential equations, a mathematical technique

known as the Laplace transform was introduced and the differential equations were

combined into one equation describing contaminant transport while the extraction pump is

on and off The concept of the constraint was introduced, where the Lagrangian multiplier

incorporated the contaminant transport equation which provided all the elements to form

the optimization problem.

With the optimization problem stated the necessary optimality conditions for the

first variation was constructed and applied resulting in the requirement to satisfy equations

(3.72) and (3.73). In order to solve these equations the necessity to solve the differential

equations and evaluate the solution at the well was identified and the solutions in the

La~ilace domain resulted in the development of equations (3.95) and (3.123) for when the

extraction well is on and off

With the solutions to the differential equations and verification that an optimal

solution exist, the second variation was constructed to determine the necessary optimality

conditions for the second variation which would state whether or not the optimal solution
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was a maximum, minimum or neither. In addition, the sufficient optimality condition was

introduced resulting in equations (3.150), (3.151) and (3.152).

The description of the mathematics creates the need to describe a procedure to

further determine the optimal solution. Specifically, roots of the optimization problem will

be found which will create candidate(s). Additional tests (i.e., the necessary and sufficient

optimality conditions) will determine whether or not the candidates are a maxima or

minima dependent on the management goal which is describe by the objective functional.

The process is relatively simple to describe but may be somewhat challenging when

applied to a specific management goal. For example, if the objective function (f) is

independent of (T) that is, f[Q(T),Cm(XwT)] then the optimization can be formulated as

follows:

Minimize TI such that 0 _< TI _ Tr 1m and

2-1[QmXw,5)I S)I=T (3.153)

where C*E [0,1] is the smallest root of J(C) and

(c) f(1,c) - f(o,) - 1 0 (3.154)

Hence we seek zeros C'of J(G) = 0. If there exist some C' between 0 and 1 then we seek a

T' such that

C'= •'•J+ e- F(l s)d1 (3.155)
G[Ai]& I ,v 

-T=•".

Using d))(X, T) as initial data then we seek a t2 such that
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[ o ,)] t,' (3.156)

that is

2 2- Ks)d (3.157)

where F depends on C•)(X,) and not on C,0 and c.o. This will require the

development of a numerical code that will first seek out candidates and then determine

whether or not a candidate is strictly positive or negative dependent on the management

goals. Chapter 4 will investigate the applications more thoroughly.
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4. Applications

Introduction

This chapter will apply the findings from the mathematical development of Chapter

3. The class of functionals will be discussed and eight subclasses of functionals will be

developed based upon the corresponding function, f(T,Q(T),Cm(Xw,T)). From these

classes, general cases will be developed and evaluated analytically to determine the trivial

and nontrivial classes of functionals. Additionally, nontrivial classes which require

numerical analysis will be identified. Lastly, specific examples based on various

management goals will also be developed and evaluated.

Before the various general cases can be developed, the class of functionals based

on the general corresponding function f(T,Q(T),Cm(Xw,T)) requires development.

Listed below are the eight combinations of the general corresponding function.

Table 4.1

Independent Variables versus Dependent Functions where Y = Yes and N = No

Independent Variable Present

T Q(T) Cm(Xw,T)

Dependent Functions

f(T) Y N N

f(Q(T)) N Y N

f(C,n(Xw,T)) N N Y

f(T,Q(T)) Y Y N

f(T, Cm(Xw,T)) Y N Y
f(Q(T), C.(Xw,T)) N Y Y

f(T,Q(T), Cm(Xw,T)) Y Y Y

f N N N
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General Classes of the Functional

Recall that if Q (i.e., Ti and T2 ) and Cm are optimal then the necessary optimality

condition for the first variation reduces to the following equations

-' .. T, 29+', ') Of 0 (4.1)

(I)XLT"M ] 1 x -[T,,0 (Xi)]0= o

and

fiT2,0, t(•2)(Xw, jF2)]-_ fiT2,1, t•) (Xw, jr )

I'f "1(4.2)

- 10C lJ M' " (X. )1C L M

for a pulsed pumping schedule at times T1 and T2. Note that

and

((XW, j) = &3) (X,., i 2 ) (4.4)

by continuity, then equations (4.1) and (4.2) become
•[•,•.e,(x.t,]- Ot,..e•(x..A)]

_(•0 Xwt1 f .l~l~•)X,•. •C.]=(4.5)t(l( J' -Ofc[ l'( ) ]_Wf 9f [t',,o)e:(x.,j,)]1

and

4-12, ,•°2 (X., •1 2] -q2,1,1Q' (xw , ')]
_ti2)X ^ fi '(2) t]_ " [ '= (4.6)

With the various functionals from Table (4.1) and the equations for the neces.sary

optimality condition for the first variation, general cases can be evaluated for those
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functionals that provide candidates which minimize the optimization problem and support

an interesting management goal.

Case 1: The Function f is not dependent on any variable. This particular case

does not serve any particular management goal. In addition, the evaluation of equations

(4.5) or (4.6) provides no candidates for the optimization problem, however, it is a

combination of the general functional and should be addressed.

Case 2: The Function f is dependent on time i.e., f(T). In this case, equations

(4.5) and (4.6) become

4t 1 0]-fi]=0 (4.7)

and

f[' 2 ]-f[' 2 ] = 0 (4.8)

respectively. Notice that all values T, and T2 are candidate solutions and hence require

further investigation by addressing the necessary and sufficient optimality conditions for

the second variation. Regardless, because there is no dependence on either Cm(Xw, T) or

Q(T) this particular problem may not provide an interesting management objective.

Case 3: The Function f is dependent on the pumping rate i.e., f(Q(T)). In this

case, equations (4.5) and (4.6) become

f[l]- f[O]= 0 (4.9)

and

f[0]- f[1] = 0 (4.10)

respectively. These particular equations have no solutions T, and T2 and thus do not

provide any candidate pumping schedules. However, if more information is known about
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the function f, a manager who is concerned only with the pumping schedule may be able

to determine an optimal pumping schedule.

Case 4: T7h.e Function f is dependent on the concentration i.e., f(C(.X,• T)). In

this case, equations (4.5) and (4.6) become

4c(x ,;) -4~(xW ,i)] = 0 (4.11)

and

f[ý(2)(Xwi2) f[&2)(XwT)] = 0 (4.12)

respectively. Again notice that all values T, and T2 are solutions and hence are candidates

for a pumping schedule and will require further investigation to determine which

candidates yield a minimum. Additionally, further information about the function will be

required to determine the necessary and sufficient optimality conditions for the

optimization problem, since this function class is implicitly dependent on Q(T) (recall Cm

depends on Q). This particular functional may be useful if a manager is interested only in

the contaminant concentration at the well. However, notice if the management decision is

to maximize the concentration of contaminant removed then it will be shown that the

solution to the optimization problem would be to pump continually (i.e., turn the pump on

and not turn off).

Case 5: The Functionf is dependent on the pumping rate and time i.e., f(TQ(T)).

In this case, equations (4.5) and (4.6) become

QT 1,]]- f[,o] = 0 (4.13)

4-4



and

iT2 o] f~- Q ] = 0 (4.14)

respectively. For this' particular problem we define

g(T) - f[T, 1]- f[T,0] (4.15)

and seek roots of g(T) in the interval [0,T 3]. The smallest root (between 0 and T3) will be

"T and the next smallest root (between "l and T3) will be T.,. If no roots exist, then T, may

be equal to zero or T3, by definition. Further analysis is needed to determine whether to

leave the pump on or off Since f is dependent on Q(T) this particular problem may

provide a manager a more realistic goal to optimize pumping and may pose interesting

management goal.

Case 6: The Function f is dependent on concentration and time i.e., f(T,

Cm(Xw, T)). In this case, equations (4.5) and (4.6) become

f[im(X,,Ti)]- f[to) (Xw,)]--0 (4.16)

and

f[i'2 ,)(X, T 2 )]- f[T 2,C2)(XwT 2 )] 0 (4.17)

respectively. Similar to case 4, notice that all values T, and T2 are candidates and will

require further investigation to determine which candidates are a minima. Additionally,

further information about the function will be required to determine the necessary and

sufficient optimality conditions for the optimization problem, since Cm(XW,T) is implicitly

dependent on Q(T). This particular functional is more interesting than case 4 but is related
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and may be useful for a management decision dependent on both the clean-up time and the

contaminant concentration at the well.

Case 7: The Funaion f is dependent on concentration and pumping rate i.e.,

f(Q(T),Cm(Xv, T)). In this case, equations (4.5) and (4.6) become,

f[ 1,C)(X,,,1)] -f[0,C('(X, ,',)]

- )( Of [1',,= 0 (4.18)
.0?C L OC M , J]

and

2)] _ qlf t(2) 1" f2)]

-Cm2(X w, T2) 1" --[-[1, 
t ( X2)(X ,,T 2 )] 0 (4.19)

respectively. This particular problem was introduced in Chapter 3 in general form as an

example to motivate Chapter 4, however, for the continuity of this section it is

reintroduced along with a procedure to determine the optimal solution.

Notice that both equations (4.18) and (4.19) need to be solved for the roots so

that candidate pumping schedule(s) can be determined. Prior to identifying the candidates,

additional tests (i.e., the necessary and sufficient optimality conditions) will be required to

determine if the candidates minimize the optimization problem. If the analysis indicates

that necessary and/or sufficient optimality conditions are met then the concentration of the

contaminant at the well must be solved in the time domain. Recall that the governing

equations and solutions for sorbing solute contaminant transport were solved in tht

Laplace domain for conditions when the extraction well is on and off in Chapter 3.

Therefore, we seek a t1 such that 0 < • 5 T3 and
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~m(X~ii = '[~mXw,)]I. =(4.20)

that is

2 xa
e L) (4.21)

where C, is the smallest root (between 0 and 1) of the function

J[@]-f(1, )-f(O, 0) - e[--- (Ile)- 9f (0,C)] (4.22)

Then we seek a T2 such that i, < i 2 < T3 and

m(Xw,•i2):t' m(Xw,5)]T * (4.23)

where C2 is the next smallest root (between 0 and 1) of J(O= 0. That is,

1 2 ý K 2

tm(Xw 1 ') =r [XWK)F(ýsY2 = C2
X K'o 2• X

(4.24)

If no CG exists in (0,1) then = T2 T3 by definition.

Notice, that F(ý, s) is dependent on d)(Xw,). Completion of this analysis will

require the development of a numerical code that will first invert the Laplace solution of

the concentration at the well for when the well is on and off These results then can be
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utilized to seek out T1 and t'2, and then determine whether or not the sufficient optimality

condition is satisfied in order to meet the management objective.

This particular problem may prove to be a very interesting objective functional

case, since there is dependence on both the contaminant concentration and the pumping

schedule. In particular, a functional can be constructed that can maximize the amount of

contaminant removed while minimizing the amount of water removed.

Case 8: The Function f is dependent on concentration, time and pumping rate

i.e., f(TQ(T), C,.(X, T)). In this case, equations (4.5) and (4.6) do not change, that is,

0'[•,t01m(X.,J,)]- •,0em"(X.J,)1
^t1("t O (X) 'O@f 0 (4.25)

M 1LOC [l , t O 6 . ol

and

-e • >iX w [ t2'O'r &o 2 ' " < -•) ] -,,W,., t, • r : ' < < , ,' x , : ] : ( 4 .2 6 )

This particular class of functionals is the most interesting because it addresses all

independent variables. Chapter 3 was dedicated to the solution of this problem and can be

applied to the other 6 cases as observed with the first variation test. Like case 7 this

particular class of functionals would require numerical analysis to identify the candidates

for the optimization problem and would follow the same general procedure described to

evaluate the first variation for necessary optimality conditions and the second variation for

necessary and sufficient optimality conditions.
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Summary. It has been observed that four of the eight functional cases may prove

to be usefui management objectives when developing objective functionals for pulsed

pumping groundwater remediation ,;when affected by rate-limited sorption/desorption.

Also, note that the eight classes of functionals can be grouped into four common groups,

since they are closely related and their analysis is similar (see Table 4.2).

Table 4.2

Grouped Classes of Functionals

Groups

Group 1 Group 2 Group 3 Group 4

Class of f(T) f(T, C.(Xw,T)) f(Q(t),Cm(Xw,T)) f(T,Q(t),Cm(Xw,T))
Functionals

R(T,Q(t)) f(C.(X., T))

f(Q(T))

Observe that groups dependent on Cm(XW, T) are the most interesting from a

management prospective (i.e., groups two, three, and four). Even though group two

seems interesting their solutions are trivial. Additionally, two of the three classes of

functionals in group one have trivial solutions but f(T,Q(T)) is not trivial because of it's

dependence on the function Q(T), however, neither provide an interesting class of

functionals. Only groups three and four are both interesting and non-trivial.

Specific Examples of Functionals

The previous section developed and evaluated general functional cases analytically

and identified classes of functionals that can provide candidates to minimize the

optimization problem and support potential management goals. This section will give
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specific examples of functionals given in the previous section by developing specific

objective functionals (i.e., the function f(T,Q(T),Cm(Xw,T)) will be given) which

represent the general class of functionals in groups two, three, and four. These functionals

will be evaluated analytically and compared to the appropriate corresponding general

functional case.

Example 1: Maximize the average contaminant concentration removed to a

particular standard. Where the average contaminant concentration removed during a

period of time above a regulatory standard is directly compared to the average

contaminant concentration removed below the regulatory standard. This problem can be

stated as follows,

1AJfr~f.i[CsCm(Xw,T)]dT (.7

minimize 4C] = (4.27)

over the admissible set of pumping schedules, subject to the constraints, initial conditions

and boundary conditions described in Chapter 3, where C, is a regulatory standard (i.e., a

positive constant). The corresponding function is

f(C (Xw,T)) - Cs-Cm(Xw, T) (4.28)

Applying the necessary optimality condition for the first variation equation (4.1) results in

J[e]- 0 (4.29)

which correlates with the results from the general class f (Cm(Xw,T)) and implies that all

values of i and i 2 are candidates, stating that all schedules are candidates. Additionally,

when the necessary optimality condition for the second variation, equations (3.148) and
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(3.149), is applied to this objective functional the result is the zero function, again stating

that all schedules are candidates. However, when the sufficient optimality conditior is

tested, equations (3.150), (3.151), and (3. L52), and the answer is inconclusive, then it is

unknown if the candidates will produce a maximum, a minimum or neither. Other tests

will be needed to answer this question.

Example 2: Maximize the variance of the contaminant concentration removed

compared to aparticular standard Since example I may have many fluctuations between

times when the contaminant concentration is above and below the regulatory standard the

amount of deviation from the standard may be important. This problem can be stated as

follows,

minimize [Cs- Cm(Xw T)]" dT (4.30)minimize •C] =Tf.•, J

over the admissible set of pumping schedules, subject to the constraints, initial conditions

and boundary conditions described in Chapter 3, where C. is a regulatory standard (i.e., a

positive constant). The corresponding function is

f(Cm(X,,T)) - [Cs- Cm(XW'T)]2  (4.31)

Tf.,

Applying the necessary optimality condition for the first variation, equation (4.5), results

in

J[C]- 0 (4.32)

Again, this correlates with the results from the general class f(Cm(XW,T)) and implies that

all values T1 and T2 between 0 and T, are candidates, stating that all schedules are
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candidates. However, when the necessary optimality condition for the second variation is

applied to this objective functional, equations (3.148) and (3.149) become,

2Cm(Xw, o) 1 (4.33)

and

2CI(Xw,T) --ý (Xw, ()--• (X,, >0 (4.34)

Interestingly, a criteria is established in order for the optimization problem to be

minimized, where
gC((2)

X9CT X' - (Xw'T) (4.35)

must be satisfied before turning the pump off and

rt U(Xw,'2)>Ž:f! (Xwi) (4.36)

9T (xITi2

must be satisfied before turning the pump back on. When the sufficient optimality

condition is tested, equations (3.150), (3.151) and (3.152), the result is similar to

equations (4.33) and (4.34), however, they are strictly positive as shown below,

2Cm(Xw,T,)-'C(X2 T) ---0 w ( 1) ] > 0 (4.37)

and

2Cm(XwT 2 ).-'(Iw'Tz) ,T (x)_r 2)J>0 (4.38)
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Note that applying the sufficient optimality condition imposes a more strict constraint

which requires the following criteria to be met if the optimization problem is to be

minimized where,
__C__ dC'43
---T (X" tI) >-f')(x.'T (4.39)

must be satisfied before turning the pump off and

tC9T (XT" 2)> i)"'-n (x" ) (4.40)

must be satisfied before turning the pump back on. These necessary and sufficient

optimality conditions motivate the need to have the solution Cm(X,,T) at the well as

described earlier in this chapter.

Example 3: Maximize the amount of contaminant mass removed and minimize

the amount of water mass removed This problem can be stated as follows:

minimize 4Q] = (I - z)f pw Q'(t) dt - zJ0 Q'(t) CM ,t)dt (4.41)

Notice that this problem is stated in dimensional form where p," is equivalent to the

concentration of water measured at the well. A weighting factor (0 < z < 1) is introduced

due to the large difference between the mass of contaminant and the mass of fluid pumped

out of the aquifer. To create a dimensionless form of the optimization problem, the

following variables and parameters are used (see Appendix I for more details).

r = (4.42)
a,

T = Qmax tT Qbnax t2Rm (4.43)
24rb-malRm
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Q'(t) = Q.Q(T) (4.44)

C,, (r, t) = CICm (X, T) (4.45)

Substituting the appropriate variables and parameters into equation (4.41) yields

3[Q] = (1- z)pI' Q(T)2_b 0m a Rm I dT- Zo3 Q(T) CCm(XW ,T)2b Om a'RmdT

(4.46)

[Q]= 21r b Om a'R.(1 - z)p0f Q(T) dT- z jT Q(T) CoCm(Xw,,7)dT] (4.47)

factoring out C' yields

•Q] ~~C fabm•mo( z)_TQ(T)dTz (4.48
{Q] = 21- ZT z Q(T)C,,(XwT)dT] (4.48)

Let K =2r b Om a12RmC' then

[Q] = K (I - fT Q(T) dT- zfT Q(T) Cm(XW, T) dT (4.49)

or

3[Q] = __- i ') T Q(T) dT- f " Q(T)Cm(X,, T) dT] (4.50)

If the minimum of 3[Q] occurs at (then I 3[Q] is a minimum at Q, therefore consider

K [ )C, f Q(T) dT- f 'Q(T)Cm(XwT) dT (4.51)

Substituting equation (4.51) with

u=1 z-,)o (4.52)
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results in the dimensionless form of equation (4.41), so the optimization problem can be

stated as,

minimize .3.[Q] = u Q(T) dT- fT Q(T)Cm(Xw',T)dT (4.53)

for the parameter u such that 0 < u < o, over the admissible set of pumping schedules,

subject to the constraints, initial conditions, and boundary conditions described in Chapter

3. The corresponding function is,

fu (Q(T), Cm(Xw, T)) = uQ(T) - Q(T)Cm(Xw, T) (4.54)

Applying the necessary optimalih -,ndition for the first variation, equation (4.1) results in

iJo[] - u (4.55)

for all 0 < u < oc, which implies there are no roots. Therefore, we test to see if the pump

is always on or off Revisiting the optimization problem equation (4.53) and evaluating it

for when the pump is off for all time, that is Q(T) = 0, results in

3.[0] = 0 (4.56)

for all u c (0, oo) and when the pump is on for all time, that is Q(T) = 1, then

3.P1 = T3 [u- 3'Cm(X, T)dT] (4.57)

Observe that equations (4.56) and (4.57) result in the following decision Table (4.3).

Table 4.3

Management Decision when the Weighting Factor is 0 and Very Large

u Functional Choose
Comparison Q(T) =

0 3o[1]<3o[0] 1

, Z >1]> 3[0] 0
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If the weighting factor (u) is zero the removal of contaminant mass is of most interest to

the manager. Therefore, the management decision would be to pump constantly.

Conversely, if the weighting factor (u) is very large, the removal of contaminant is trivial

and the management decision would be to never pump. Also note that additional tests

(i.e., necessary and sufficient optimality conditions) are not needed. In addition, the

necessity to solve for both Cm(Xw,T) at the well when the pump is on and off is not

required as described in the procedure in Case 7.

Example 4: Maximize the contaminant mass removed while considering the

future and net present value of the project. Utilizing the dimensionless derivation in the

previous example the following problem can be stated as:

Minimize 3.[Q]= f T 'e-[uQ(T)- Q(T)Cm(Xw, T)]dT (4.58)

for the parameter u such that 0 < u < oo, over the admissible set of pumping schedules,

subject to the constraints, initial conditions, and boundary conditions described in Chapter

3. Here esT is approximately equivalent to the present value equation described below,

F
P = (4.59)

where

P describes the present worth or value

F describes the future value

F describes the interest rate or discount rate

n describes the number of periods
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and would have units of dollars * mass of contaminant (i.e., the amount of money required

to remove contaminant mass). Notice that the functional described which depends on T,

Q, and Cm but can be represented as the product of two functions, A(T) and B(Q(T),

Cm(X,,T)). This simplification results in the corresponding function described below,

f(T, Q(T), Cmj(XW,T)) = e-r[uQ(T) - Q(T)C,(X , T)] (4.60)

Applying the necessary optimality condition for the first variation, equation (4.1), results

in

e cT( -C X , ,t ) + e T C ( " ý 0 ( 4 .6 1)

which simplifies to

e u=O (4.62)

Observing that e'L:4 0 then

JA[P] = u (4.63)

for all 0 < u < oo, which implies there are no roots. Therefore, we test to see if the pump

is always on or off Evaluating the problem further results in

z3 [0] = 0 (4.64)

for all u e (0, oo) and

3A1] = T3u- f Tr3 Cm(Xw, T) dT (4.65)•o[1- T3 I-C(.

when the pump is strictly on for all time 0 <_ T _• T3, as in Example 3, where the

management decisions represented in Table 4.3 are appropriate.
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Summary

This chapter applied the findings from Chapter 3 and identified eight subclasses of

functionals. Of the eight subclasses it was identified that the corresponding function f(T,

Q(T)) was nontrivial and non-interesting, the corresponding functions f(T, C.1(X,,T)) and

f(Cm(Xw,T)) were trivial and interesting, but most importantly the corresponding functions

f(Q(T),C.(X.,T)) and f(T,Q(T),Cm(Xw,T)) were interesting and nontrivial from a

management perspective for groundwater remediation when contaminant transport is

affected by rate-limited sorption. Specific examples were then evaluated and confirmed

the results of the general cases. Additionally, the analytical solutions provided

management decisions for either a pulsed pumping, continuous pumping strategy, or not

to pump at all for specific objective functionals.
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5. Conclusions and Recommendations

This concluding chapter pulls together the research presented in the previous

chapters. It begins with a summary of the first two chapters and focuses on the findings

presented in both chapters three and four. It will discuss the significance of the findings

and the practical implications of the results. Lastly, it lists recommendations for follow-

on efforts to this research.

Summary

The remediation of groundwater contamination continues to persist as a social and

economic problem due to increased governmental regulations and public health concerns.

Additionally, the geochemistry of the aquifer and the contaminant transport within the

aquifer complicates the remediation process to restore contaminated aquifers to conditions

compatible with health-based standards. Currently, the preferred method for aquifer

cleanup (pump-and-treat) has several limitations including, the persistence of sorbed

chemicals on soil matrix and the long term operation and maintenance expense. The

impetus of this research was to demonstrate that a calculus of variations approach could

be applied to a pulsed pumping aquifer remediation problem where contaminant transport

was affected by rate-limited sorption and to answer several management objectives.

The literature search revealed that the affect of rate-limited sorption still presents

difficulties for the manager interested in groundwater remediation. It addressed the most

current development of aquifer models to describe this phenomena and identified optimal

pumping strategies. It was observed that several aquifer remediation methods involved

optimization techniques but none addressed the affect of rate limited sorption.
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Additionally, the literature review revealed that no one to date has developed an

optimization technique involving pulsed pumping nor a method that involves an analytical

approach (i.e., a calculus of variation approach).

Summary of Findings

In this research several complex problems were collectively addressed into a

specific aquifer remediation problem to demonstrate the untapped power of a

mathematical technique. First, a pulsed pumping method was utilized since it was

observed as the most promising strategy to address the optimization problem. Secondly,

the affect of rate-limited sorption was introduced to test the concept of the constraint

where the Lagrange multiplier incorporated the contaminant transport equation. Lastly, a

class of functionals was developed and discussed as management objectives that would

give insight to both the social and economic problems of aquifer remediation. Below are a

list of findings.

(1) Chapter 3 revealed that a calculus of variations approach to optimize the

specific functional when pulsed pumping aquifer remediation is affected by rate-limited

sorption is feasible.

(2) Chapter 4 identified eight subclasses of functionals. When the objective

functional was dependent on the contaminant concentration and was in the form of a

quadratic a criteria for when the pump should be turned on or off is observed, verifying a

pulsed pumping strategy. However, when the objective function f is linear in the

concentration then the decision is bivariate (i.e., either turn the pump on for all time or do

not turn the pump on at all).
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(3) Specific examples verified the general class of functionals (i.e., if the form the

function is known the outcome is also known) which may provide insight to the manager

to make rational decisions.

(4) Additionally, the analytic solutions presented in this research may be useful in

verifying numerical codes developed to solve optimal pulsed pumping aquifer remediation

problems under conditions of rate-limited sorption.

Recommendations

As identified in Chapter 3 and Chapter 4, not all problems can be solved

analytically and require the-development of a numerical code to invert the contaminant

concentration solution at the well in the Laplace domain to the time domain. Additionally,

this research only addressed a schedule that would go through three stages (e.g., the

extraction pump is on, off, on). Currently, these two issues present limiting factors for

immediate follow-on research where the creation of a numerical code can resolve these

short term issues. Future continuation of this research should focused on the following

areas:

(1) Create a more realistic scenario and eliminate the model assumptions described

in Chapter 3.

(2) Allow for multiple extraction wells, whose pumping rate schedules could differ

and seek an optimal pumping schedule for each well.

(3) Investigate the placement of multiple extraction wells and seek an optimal

placement and optimal pumping schedules.
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(4) Validate theoretical results with experimental results obtained from sand box

experiments and/or field experiments.
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Appendix A

This appendix contains the derivation of the advection-dispersion equation that

governs the contaminant transport in a saturated, homogeneous porous media with radial

converging flow. It incorporates a source/sink term to describe the transfer of

contaminant from the aqueous phase to immobile water regions, and accounts for the

distribution of contaminant between aquifer solids and groundwater (Adams &

Viramontes, 1993).

C( _ 1 1 0 [ ( r, (rt)t V'(r) (C't t)
9t R. r O 9r Rm Or Ot

Where the following are defined as

D' =[aIV.'+D1l (A.2)

V"= 2rbQ nr(A.3)

= R(A.4)

Om Rm

where the symbols are defined by

C' (r, t) solute concentration in the mobile region [M/L3]
Ci (r, t) volume-averaged immobile region solute concentration [M/L3]
V", (r) mobile region seepage velocity [L/T]
Dm rmobile region dispersion coefficient[L 2/T]
em mobile region porosity [unitless]
Oem immobile region porosity [unitless]
R. mobile region retardation factor [unitless]
Rim immobile region retardation factor [unitless]
a, longitudinal dispersivity of the porous medium [L]
b depth or thickness of aquifer region [L]
Q'(t) extraction well pumping rate [L/T]
r radial coordinate [L]
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t Time [T]
D" Molecular Diffiision Constant [L/T]

Therefore,

rD" =r~aj IVm'+D'j=r a, D(, r =a, 2-, +-rD" (A.5)M 2;b ~ J 2;r b 0.

So,

rD" r a, •-• + VD '___r6
M Or 2;r bm 0 r O~r

The first term in equation (A. 1) becomes

I 1 0[( Q'(t) +V)C (A.7)
Rm r Or 2• 2rbOm ) r

Applying the differentiation in equation (A.7) results in

1 1-[( Q'(t) D) ' + D't) gC',(rt) (A.8)
R. r 2;rb Om 0 ,r Or

Rewriting the equation (A.8) and rearranging the transport equation (A. 1) gives

9C' (rt) I_ aQ'(t) )D Cm(r,t) + Q'(t) 9C' (r,t)
=t R7.2xbOmr d r Rm- 2x--b-mr) Or

I I .Cm'(r,t) O•,Rj COC' (rt) where

Rm r Or OmRRm Ot

(A.9)

In order to describe the transfer of solute between the mobile and immobile regions

another equation is needed. A common model used is the first-order rate expression

[Goltz & Oxley, 1991:548]:
OC '(r, t) a' rC r), [CC(r,t) -Cm,(r, t)]

8tt
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where a' [T1'] is a first-order rate constant.

To create a dimensionless form of equation (A. 10) the following variables and

parameters are used

=0.• (A.Il)
0. Rm

r= (A.12)
a,

T= Q,,X, (A.13)
2;r b Om a'2Rm

Q'(t) = Qm.,Q(T) (A.14)

C'(r, t) = CoCm(X, T) and C'(r,t) = CCin (X,T) (A.15)

where C' = max{IC'(rO)Ir, <r <. o}= max{C'(rO)Ir. < r <ool so,

OC'(r,t) - c0 OCm(XT) dT = c, Qmax 2 9Cm(XT)89t = 9 T dt - Co ma 2R cT(A.16)OtOT dt 2;r b Om a I Rm OT

,6C'(r, t) = o Qm.x OC.(XT) (.7

0t 2;r'b 0m aI2 Rm 9T

C'(r,t) =Co m(X,T) X = C.' iCm(X,T) (A.18)

Or 0 9X Or a, loX

01 Cm(r,t) = Co 02 Cm(XT)a 1
2  9X2 (A. 19)Or 2 al 2 'X2

Plugging into the partial difterential equation (A.9) yields
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Q.. eC m(XT) 1 a,1Q.Q(T) + C D 2C,(X.T)
2xb0. a,2R. 6"T RM (2-z b0a-X )a, 2 OX2

I QmcQff) )C. OCm.(X,T) 1 1 IOCm(XT)
+b I (D')2 bgCoa1  (A.20)

m / R. a1X a, eX
-P~o QMWC 9Ci,(X,T)

-fCO 2xbOm ai2Rm O T

Multiply both sides by:

221r b 0 al Rm (A.21)
C0Qmax

and canceling like terms results in,

OCm(X,T)- Q(T) 2;-bnmD* 0 2Cm(X,T) Q(T) OCm(X,T)
OT - x) Q-X 2  x ex

2;rb 0. OCm(X,T) Oci.(XT) (A.22)
Qbm,X (D') -X 8l

Define D - 2;r b 0m D" then equation (A.22) can be written as
Qmax

OCI(X,T) =(_ +D) 0 2 Cm(X.T) _(Q(T)+D OCm(X,T) 'OCin(XT)
4rT x ) X2  -X- x (A.23)

Examining the second partial differential equation (A. 10) and substituting in (A. 11) - (A-
15) in the equation

' [C(rt)-C(r,t)]A.24)

Ot 0• Ri

results in
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2bO , Q.,2R0C(XT) - a' [CC(X, T)-C'C,(XT)] (A.25)
21r b 0.a, Rm, eT OlmRu

Multiply equation (A.25) by

2J" bOma,2Rm (A.26)

This results in,

OC11(X,T) = 21rbal'a'[C.(XT)- C .(,T)] (A.27)

40T Q...8

Make the following substitution by defining the dimensionless first-order rate constant ox
as

2,r ba,2 a'
a = 2r(A.28)

Qm.,

then equation (A.27) becomes

1C•,(Y, T) = .[Cm(XT)- C.(X,T)] (A.29)
,6T

Now the groundwater transport is described in dimensionless form by the resulting two

partial differential equations (A.29) and (A.30):

OC.(X,T) Q(_+D) Cm(X,T) . Q(T, +D' C(X,T) /3C(A(X,T)
X O ) X 2  x X lox

and

9i.(XT) = a[Cm(XT)- C(X,T)] (A.31)OT

with the following initial conditions:
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CM(X,O) for x. <x<x. - Co(X) (A.32)
0 for x. <x<oo

and

c(xo) I for x <x<x. C (X) (A.33)
o for x. <x<o

where X. is some finite radius. Also the boundary conditions are written as

9Cm (oo, T)+C.(oT)=0 and Cm(oo, T)=0 for all 0<T_<T 3  (A.34)
a9X

C9"(oo, T)+C.,(o, T)=0. and C.(oo,T)=0 for all 0<T_<T 3  (A.35)

49X
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Appendix B

In this appendix a mathematical technique known as the Laplace transform is used

to solve the initial boundary-value problems given in Appendix A. It converts initial-value

problems involving linear differential equations as a function of time into an algebraic

problem involving the Laplace transform variable (s) [Adams & Viramontes, 1993:3-12].

A general Laplace solution will be derived for the transport equation which is described as

the dimensionless partial differential equation below (see equation A.3 0):

IOCmn(Y.,T) _ Q(T) + D d'Cn(X,T) (Q(T)D D'dCm(X,T) OC,.(X, T)
T9T x eX2  x X)OTOT

(B. 1)

for x, < x < oo and 0 < T < Tf,1 . If we suppose Q(T) = 1 for all T, we can apply the

Laplace Transform technique. Let s denote the Laplace Transform variable.

1 j9C- =ZII+D I I ).O~Xj[(,BOT_ (B.2)

OT x x (LkX J c JOT

Taking the Laplace Transform results in,

'Cm- Cm(XMO) (+ D -) -PCml -C.(>C) (B.3)

where

Cm(X,O) denotes the Laplace domain dimensionless mobile region solute
concentration

CU (X, s) denotes the Laplace domain volume-averaged immobile region solute
concentration

s denotes the Laplace Transform variable
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The second partial differential equation which describes the transfer of solute between the

mobile and immobile regions (see equation A.3 1) after applying the Laplace transform

becomes:

sC.-Co. = a(C m-Um ) (B.4)

sX.-C.o = aUm-aCU (B.5)

sC?! "+ a U -- a Em+ C.,o (B.6)

SaCM+C•mO (B.7)

s+ a

Plugging equation (B.7) into equation (B.3) results in

SCM(o X o =X X X( OX L s+a -C.o ]

Expanding the third term on the right side yields

IC~m = (j.+ I+ D s a+(U.) 4fisam a)+fl..m (B.9)

Rearranging and collecting similar terms results in

1 , 2 -C_ (ID ) J__sa_t_41'U C. a-( D )OX2~ -+- -- ~Cim (B. 10)
X X s+ a s~a)

If we define
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SXw <X<Xo
F(X) = 0C(XO)=CM O) (B.1)

X* < K< 00

where F(X) is a dimensionless arbitrary initial concentration in both the mobile and the

immobile region, then equation (B. 10) becomes:

(I+D4ýICm + DI + _D__ 1s F(X) (B.12)J O ,X2  X X O--X s+-a lJC, =-(s+a .

If we let

= ( +(B.13)
s+La +

and
Y = ( flks+ +1)(B. 14)

s+

then equation (B. 12) reduces to:

D+ +X (,X+ X)0 YX U.mF(X' S) (B.15)

where F(x, s) =-2 F(X).
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Appendix C

The Laplace transform equation, together with the appropriate initial and boundary

conditions, including that molecular diffusion is negligible while mechanical dispersion

dominates, results in a differential equation describing the extraction well when it is on in

the form of:

|-x-- +2C ]- ýCM Y C.m=F(X' s) (C. 1

X9X 2 X 16X

where the overbar indicates the Laplace transformation of the function. Multiplying

through by X results in

F +_ _ Cm = XF(X,s) (C.2)

9X2  0 X

Assuming equation (C.2) has the following solution

C. (X, s) = g(X, s)e 2 (C.3)

and substituting equation (C.3) into (C.2) yieldsI
d2 Oe d2 X)

X2  + XX(Xs) (C.4)

Differentiating the first term of equation (C.4) results in

( I

d d¢2X. =e 2 - -½Xd¢+- (C-5)

dX dX ) dX2  dX 4

Evaluating the second term of equation (C.5) results in

_.22 2
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Combining both terms, simplifying, and inserting back into equation (C.4) gives

e-!xd 2d 2 -1 -x _-x
S2-X =X(Xs) .7)

dX2 4

Multiplying each term by eI gives

d x + =e2i XF(X,s) (C.8)

iix
Employing the change of variables y = y3[X+ , and (D(y, s)= g(X,s) leads to theS 4yJ

following equation

d 2 (1 -2 P( rI -I ]) Id2 -y -r-3exP - -yi-4y-• FY3y-4y -•,s)=- 9(y,s) Y" <Y<00d 2 •y

(C.9)

See (Adams & Viramontes, 1993) pages A-64 through A-65 for derivation and rationale

for variable change. The boundary conditions, change also, again see (Adams &

Viramontes, 1993) pages A-65 through A-68 for rationale and derivation to become,

1 1 _y,
--- 4(]y) + _ 3 0 (C. 10)

2 dy

I (] 0) + y d3 (-o) o0 (C.11)
2 dy

The general solution to equation (C.9) is of the form
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Y)(= C)C, 4 1(y)+C, 4)2 +4)p (C.12)

where C, and C2 are constants, and 01(y) and 02(y) are the complementary solutions. and

Op is the particular solution. Also, 01(y) and 0I2(y) satisfy the boundary conditions (C. 10)

and (C. 11), respectively, so that

(I 1 (y) = A Ai(y) + BBi(y) (C. 13)

02 (y) = CAi(y) + DBi(y) (C. 14)

where A, B, C, and D are constants and Ai(y) and Bi(y) are Airy and Bairy functions,

respectively (Abramowitz and Stegun, 1970). Equation (C.9) has the solution in the form

(D(y, S) = f g(y, 7, s)5Q(7, s) d 77 (C.15)

where g(y, q/, s) is the Green's function given by:

SyCA 
2 ](q) < 7< 00

g(Y, 7, s) = (C.16)S(77)4 2 (y) <y

where W[4)1 ,4 2]( 1 ) is the Wronskian of (DI and 0t 2.

To find the solution to 01(y) we apply the boundary condition at yw, which is

1 1 d D(y_)
- - 0( 3 '. ) + r r 3 = 0 ( C .1 7 )
2 dy
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Solving for 01 and applying the boundary conditions at yw yields:

0,'s (y) A Ai(y) - Ai] Bi(y)] (C. 18)•I() =A A~y)G[Bi]

where

1-y (C.d19)
2 W dy

and

I =dBi d[i iy)+ y " -ý ) (C.20)

2 dy

To find the solution to 02 (y) we apply the boundary conditions at y 00 which yields:

(2(Y) = CA i(y) (C.21)

that is, D = 0. To find the particular solution to equation (C.9) and construct the Green's

function equation (C. 16) we need to determine the Wronskian

I I(=D (DIZ2 (C.22)
1 2

So equation (C.22) becomes

A[A, (y) - G[Ai] Bi(y)] C[Ai(y)]
W[(I I(D XY =A[A'i(y)-G G[Ai] Bf(y)J C[A'i(y)] C.3

Simplifying equation (C.23) becomes
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SG[IA] A'i(y) G[A11]1
W[OD,cI2 (y) = ACjAi(y)B'i(y) B] -B- Bi(y) G[B]J (C.24)

or W[ 2 = ACI IWA, L(C.25)

since the Airy function approaches zero as its argument approaches infinity.

Knowing W[Ai,Bi](y)= 1 (see Abramowitz and Stegun, 1970) equation (C.25)

becomes:

[G[Ai] 1

that is, the Wronskian is a constant. Substituting this into equation (C. 16) the Green's

function becomes:

"A[Ai(y) - G-Ai] Bi(y)] CAi(r/)

ACrG[Ai]] 1y<r<o

g(y, r7) = x (C.27)" Ai(?7)G[Ai] Bi(i/) CAi(y)
A[ir)G[Bi] 

Y 5?:

AC[g I1Ac G[Ai] Y<r<y

Simplifying the Green's function becomes:
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r [Ai(y) - Bi(y)( Ai(.) y<28<

g(y, 17, s) = (C.28)

Ai(q)- GNBi] q -iy Y.51A:/..A
G[Ai] I

Through a manipulation of variables C.(X, s) becomes,

I I I

C-(X,s) = e- 2 Jý(x, ý, s) 3-e 2 F(ý, s) d (C.29)

(see Adams & Viramontes, 1993) pages A-77 through A-78 for a more thorough

derivation and explanation.

Verifying the nonhomogeneous boundary value problem:

4)(y) = CI ( (y) + C D2 + 1p (C.30)

together with the boundary conditions

D, (y) = AAi(y) + BBi(y) (C.31)

02 (Y) = C Ai(y) + DBi(y) (C.32)

has the unique solution

4)(y, s) = Yr. AiQ7)q) Ai(y)-Bi(r/)Ai(y) (r7,s)dr7

F-Y wI G[i] I(C.33)
G. G[ Bi] )

Expanding equation (C.33) results in:
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GB]G[Ai] (C.34)

Combining equation (C.29) and (C.34) results in the solution

- Ai -r1 X+- '''Al'3 'G[Ai] L 4y 4yJ

r3 ~X+ ~ K !-YL~F(ý, s)d

Ai- B (X + 1±)]fBi[yi(ý+i-e (1sd.

Solving for 2 Xy- 3, s ttewl eut ntefloigeuto hr h is n

Cm(XwS) = i] y) 3 iY J i[3( +)]24 f(ý, s) d ~(.

.IA (X IIN7(+i

xJBi' Y,+- ]fie2 ~ F(4ss)dd
4y 4r

(C.35



noting that (Ai(y,) B'i(y,,) - A'i(y,) Bi(y,.,)) = W[Ai, BiXy,,) =-yields the following

solution to Z(m(Xw , s) in the Laplace domain:

CmXwS = ei + ýs) d (C.40)
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Appendix D

In this appendix, the Laplace transform equation together with the appropriate

initial and boundary conditions, including that mechanical dispersion is negligible while

molecular diffusion dominates, results in a differential equation describing the extraction

well when it is off in the form of:

X2C D9Cm + C-yn = F(X,s) (DA)

'OX2  X 4X

Where the overbar indicates the Laplace Transform of the function.

Multiplying through by X/D results in:

X9 2 I 9C"- X - X-

X + x -m rC = F(Xs)= Xg(X's) (D.2)
.OX 2 5X D m D

This results in the differential equation

X 2 C OX XT m = X9(X,s) (D.3)

where (=1 (DA4)
D

The boundary conditions associated with this differential equation are obtained by taking

the Laplace Transform of the corresponding boundary conditions.

£( 9-Cm(XT)) = 0 (D.5)

yields
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9 c- (X., S) = 0 (D.6)

and

1('- (oo, T) + C(oo, T))= 0 (D.7)

yields

0 m (00, s) + Cm(0,S) = 0 (D.8)

Assuming equation (D. 1) has a solution of the form

Cm(X S) = M(X, s) (D.9)

that satisfies the differential equation (D. 1) and the boundary conditions (equations D.6

and (D.8) then substituting into equation (D.3) yields:

x d'(X s) + d x(s)._.xs)=x,(Xs) (D.1o)dX2 dX

In order to construct the Green's function, we seek a simpler equation where the left-hand

side has no constant in the third term. Therefore, define y = AX where A is a constant to

be determined and

4)(y, S) = M(X, s) (D.11)

then equation (D. 10) becomes

d Ad2 (y+s)+ d4(Y'S) AX ZD(y,s) = XJ(1,s) (D.12)XA +
dy dy A
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Multiplying through by X gives:

X2A 2 2'(y,s) +AX d ( ys) )X2  (y,s) X g( Y ,s) (D.13)

d dy2  dy A

or

2 d2 (yS) d d(dy,s) -Ty2  y _
y d2 (1(~)•y ...-- O(y, s)= Y--- Y--,S) (D.14)

dy2 +y dy A2  A2  A

If we choose A such that

Y 1 (D.15)A2

A=T 2  (D.16)

then

y 2=Y X (D.17)

Dividing equation (D. 14) by y2 yields the following equation:

d' (D(y, s) + I_ d (D(y, s)

dy2  y dy 2

on the interval yw < y < oo.

Looking at the Laplace transformed boundary condition at the dimensionless well

radius (equation D.5) and converting it into terms of yw yields:

-(y.,s) = 0 (D.19)
dy

where yw = Y2 X" (D.20)
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Looking at the boundary condition at infinity, and rewriting in terms of y = cc yields

I d 4)
2 y -(00, S)+4(M~, S) =0 (D.21)

since y=Y- X (D.22)

then y -+ o as X - oo.

To derive the Green's Function associated with this boundary-value problem, we

first find the general solution ,o the homogeneous problem. That is, we seek the

complementary solution to equation (D. 18):

d2 D@(y,& l)1dcl'(y, s)' +(y, s) = 0 YW <Y< (D.23)
dy 2  y dy

Solutions are in the form of the modified Bessel functions of order zero [Abramowitz &

Stegun, 1970]. The general solution of this homogeneous differential equation is of the

form:

0(y,s) =C cl)1(y,s)+C, c) 2(y,s) (D.24)

where C, and C2 are constants and 4>,(y, s) satisfies the differential equation and the

boundary condition at y = yw and c12(y,s) satisfies the differential equation and the

boundary condition at y = ao. Both of the so]- .tions are of the form:

0ý (y, s) = AI.(y) + BK.(y) (D.25)

and

cb2(y, s) = CI.(y) + DK0(y) (D.26
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Here AB,C, and D are constants dependent on s to be determined and L(y) and K0(y) are

Bessel functions of the first kind, order zero and third kind, order zero, respectively.

To find a solution, 4D (y, s), we apply the boundary condition at the well (equation

D.19):

d 4) (yw)- 0 = AI'o(y.) + BK'o(Yw,) (D.27)
dy0

thus

- BK'(Yw)A - (D.28)
I0'(yW)

so,

*,(y,s) = _[ (W) Io(y)+Ko(y)] (D.29)

If we choose B = I'(yw), then equation (D.29) becomes:

4)1(y,s) = -K(y)I(y) + IF(yw)K(Y) (D.30

To find a solution, 0 2(y,s) we apply the boundary condition at y = (equation D.21)

(D.31ý 2 (oo, S)- €12(0, S) = 0 (D3. 31)

dy

Thus

r½ dy-D[C(oo, s) + DK"(oo, s)] + CIO (oo, s) + DKo (oo, s) =0 (D.32)

or
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C Io (, s) +1. (00, s)] + D[y2 Ko (co, s) + Ko (oo, s)] = 0 (D.33)

But this is only true if C is chosen to be zero. Hence,

4)2(y, s) = DKo(y) (D.34)

Without loss of generality, we can take D-- .

We now seek the particular solution to equation (D. 10) using a Green's function

which is of the form:

W[I ,, (D ,2 ](,) Y < 77< 0
g(y, ,s)) I (()2]() (D.35)

W[(DI,12](77) Y'-_y

where W[0),02]1() is the Wronskian of (DI and 02. Determining the Wronskian

4) ( (D.36)

so,

- K'(y.) o(y)+ I(y.)Ko(y) Ko(y) (.37)

W[cb1 D2](Y) = -K'(yw)I'(y)+I'(y.)K'(y) K.(y)

= [- K'(yw) Io (y) + I(yK,, )K(y)] K'(y) - [- K'(y,) IF(y) + I'(y) K'(y)] K. (y)

(D.38)

= K'(yw)[K0(y.) I: (y) - K:(y)I 0(y.)] (D.39)
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= K.(y,)W[Ko,I0Xy) (D.40)

where W[Ko,Io.y) = 1 (D.41)
y

so, W[0 1,, ](y)D2 I1o(yw) (D.42)

y

Thus the Green's function I '[ (Y, ( 7) Y < 7< 0

9(Y,= /7 W(D)I) 2(y) (D.43)
([W (77) 2](2() YW < r•_< y

becomes

41I' (y.) K.o(y)- K: (Yw)I.o(y)] Ko(r/)

9(Y, 77, s) = Kt(W Y (7 0.344)
JF[I(yw) (7)Zo r- Zo(yw) 1. (qr)] Zo(y)

Ko(yw)

The general solution to equation (D. 18) is of the form

cD(y) = fg(y, 77, sy '(r7, s) d 77 (D.45)

I I 1

Since y = y X, then '1= ý and d i7= y2 d , then equation (D.45), together with the

right hand side of equation (D. 18) becomes

-- gý x,2• , 2 d (D.47)

Since Um(X,s) = O(Xs) and c1(y,s) = q(YX,s) then
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•2(X,s) = s (,s (,s)d (D.48)

If we define b(Xs) =4 2 X)ý2t, S (D.49)

then

U( (Xs-) = (, ,s)F(4, s)d (D.50)

Substituting in the constructed Green's functions (equation D.44) using equation (D. 18)

yields

c1 (y) = J• 7{[I'(Yw) K°(77)-K'(YW)I°(7?)] K' (","(7sld (.1
f• y[I'o(Yw) Ko ( 7)- K' o (yw) Io(Y)]K 3"(.l

K.(' (yoJ7 ( q7 , s) d qY. K'(yw)

Combining terms

ID y = K' (y w) K o(y)FY. i7K o(q7)J *(7, s) d q- K o(y)Fy .rqIo( q/)J *(r,s)d r7(D 52
K~(y) 0 J ~(D.52)

I+~y, K ()?K.?)*q s)d" Io (y)fy K. (j7)Y" (q, s) d ?7
+K-I(y) y) (

Therefore,
I'(YW) 2o• K •F•sd

K___ (F ý F ý s) d

(X, s)= - K. 27 x 2I (s)d0  (D.53)

Solving for Um (Xw, s) at the well results in the following equation where the second term

in equation (D.53) is zero at the well.
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(D.54)

Simplifying

Um(Xw,S) = 0.~ j[I(ý XWK1 7~0(AX)O Xw)JK(2KF4sd

(D.55)

Noting that

W[,,1 " 1 2 "K " .2 " O " (.56)
1

Y~2 X.

then equation (D.55) becomes,

Um(X.IS) = W[KoIo(TI xw )f •rKo(2 Fr., s)d (D.57)
K' ,w

This yields the following solution to Um(X,,S) in the Laplace domain:

ýQ w )= XK 2--, x- ýKoýT 4 (,4,s)d, (D.58)

xxw)
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Appendix E

In this appendix, we will recall the partial differential equations (A.30) and (A.3 1)

formed earlier in dimensionless form,

9Cm(X=T) Q(T) +D2 (XT)+ (QT)+ D]eCm(XT) 0£9C,(XT (.1)

OT x9X 2  xX Elx)T

and

10C.(X, T) = a[Cm(X"T)-C•i(X,T)] (E.2)
OT

Multiplying equation (E.2) by the integration factor a(T) = eaT yields

'0[eT C.(XT)] = aeaT C.(X, T) (E.3)

Integrating both sides of equation (E.3) with respect to time T and evaluating results in

e aT C (X, T)-eaO C-(XO) = aJTo e Cm(X, r)d r (E.4)

Therefore, solving equation (E.2) for Cim in terms of C. gives

Cj,(X, T) = e-- T Ci., 0(X) + CW-aea T ear Cm(X, ( ')d r (E.5)

Taking d/dT of both sides gives

0Cj (XT) -aT C-aTfT

.OT -ae- _) 
- a'ea e-T Cm(, r) d + a Cm (Y, T) (E.6)

Plugging equation (E.6) into (E. 1) results in the contaminant transport equation

t9Cm(XT) (Q(T)+_Q D ) 9Cm (X, T)_aCm(xT)
4-T X D) ex,()'T) e (E.7)

+fiae- C, 0o(X) + fla2 e -aTT ear Cm(X, r)d r
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or

0=(Q(T) +D 92C-(XT) (Q(T) D'.k aC.(xT) _PC(T
x ) X2  Lx X) ex fC(XT

+fpC Te-a C.o(X) +fla2e-aT f T ea' Cn(X, r)d r-Cm(XT)
.OT

Forming the Lagrangian in differential form results in
Ti

I= f f(T,Q(T),C.(X.,T))dT+

T&[G[Cm I X,rT) + 8ae- aT C..o (X)

(X' f T) 2( ad T_ ]dXdT

(E.9)

where G[C. ](XT) is defined to be the differential operator which depends on Q,

G[Cml(XT)= 2i•_ +D 'ICm+ (Q(T) D).Cm-8C (E 10)

( x ) ax 2  (x x ex

Note that equation (E.9) has seven terms which can be simplified by performing

integration by parts on each term. Starting with the second term

ffx(,T) +DD " 'dXdT (E.11)

performing integration by parts with respect to X results in

= (Y.tT"(Q(T)+D-a-l.•x -f f - 0L (XT) +D] dX
iL xTJ lox x- ex loxQ( (E.12)

Evaluating at X, and oo gives,

aoo)-c-oTc Q(T) acO(xT) °°T- ( X .')-- ) 49X

-9CM ( ) axY, T)x axT) + D(E.13)

lx loax [x )J
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Performing integration by parts once again to simplify further results in

= (0 _T)D_9__(o T r0 t(T)Q(T)D 1 (XT
3 Ox (E. 14)

C. r A(X T Q(T)

S -i2XT u +Dd

= A(o, ) 9C-- Foo T)- (Q(T) D)Q(T)A(Ti r,(XT
=2(c, O) 1(TL O+D) x2 i(~~~X~)

+C"'_ 2 J A (XT)Q(T)+D

(E.15)

Evaluating at X. and oo gives,

, ,T)D (ooT)- r-- -oc, T)D C.moo, T) + T)[ (Q(T) + D -(X,T)• ]) .(XT)

+c (XT)-9 AX Q(T)+D
9X~2 JýdX

(E.16)

Knowing that the boundary condition at oo for Cm is

19Cm (oo,T) +C. (o, T) = 0 (E.17)
egX

then equation (E. 16) simplifies to

-. ( oo, T) DCm(oo, T)- dX(oo, T) DC. (oo, T) (E. 18)

Collecting all the terms results in the final form of equation (E. 11)

-DC.(oo,T TA(oo, T) + 0X (00, T)i + [8 (Xw,T•Qx• +D D)-XT) Q(T) C(XT

.. 
-(XT) +1 ]dX®~-X [ A(X, T) Q(T)+)d

(E.19)
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Evaluating the third term of equation (E.9)

TT r (X, -+D -dXdT (E.20)

and performing integration by parts results in

[(X. T) Q + D dX (E.2 1)

Evaluating at X. and o gives results in the final form of the third term in equation (E.8)

-A(X.,T Q(T)~ ++)D (XWT)- ~Cm 9 [2 (X,T)(Q(T) + D)]dX (E.22)

The fourth and fifth terms do not require integration by parts and are written as

TTrf I(XT)[-PaCm(XYT)]dXdT (E.23)

0

and

TA

Tf , f (X, T)6aoe-a T Cio(X)dXdT (E.24)

0

Looking at the sixth term

Tf, F (X,T)a2.e-aT Iear Cm(X, r)d rdXdT (E.25)

and interchanging the X and T integration is

Sa2p)Tow ,A(X, T -aT fe0T eC(X, z)d rdTdX (E.26)

X,.

Ignoring the constants for the moment and the integration with respect to X, and

performing integration by parts with respect to T where du = eaT Cm(X,T) and

v = fT (X,t-at dt, then Judv = uv- "vdu is equal to
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(ýe"'a C.(X, r)d rTX•.(X, t)e-a' dt)rIT - fT- (f T A(xt)e-t dtjaT Cm(XT)dT

(E.27)

Evaluating at T = Tfa and T = 0 results in

(o e t C• (X, r)d rXj'• ,,(x, t)e-a t dt) -0-0 e"T Cm(Xe T)J" C X,(X, t)e- dtdT

(E.28)

= ' f -J ee e-at Cm(XYr)A(Xt)dtd-_f:" f
T eo aeTe-a C (X,T)2(X,t)dTdt

(E.29)

In the first integral of equation (E.29), change the integration variable r to T to get

f T f T6 e- Te-' C. (X, T)A(X, t) dtdT - -f T e Te -a Ct (X, T)A(X, t)dtdT

(E.30)

= o[f'- e - T e- Cm (X, T)A(X, t)dt-fT e a T eCat C (X, T),A(X,t)dt]dT

(E.31)

Since the integrands are the same in both integrals then this simplifies to

f'+ j'md"- ea-• Cm(XT)A(Xt) dtdT (E.32)

Rearranging equation (E.32) and plugging in the constants from the original equation

(E.25) results in the sixth term's final form

:f'u a2 C m ( X,T)eu T (f• e-atA(X, t) dt )dXdT (E.33)

Lastly, the seventh term

f" f, O.(X T)[- dXdT (E.34)
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is simplified by first interchanging the X and T integration

Tfftb,~( ~~ ~9 dTdX (E.35)

and then by performing is integration by parts

,I.(X,+TX- CCm(X,T)+TT (X,T) dT (E.36)
0 O9T

Evaluating at T = Tf,1 and T = 0 results in the seventh term's final form as

-,A(X, Tfmi) C. (X, True) + Al(X,0) Cm,, (X) + fT' C (X, T) IOA XTT(.7~ %(,0Cm(X +f•-mX,) ~(X,T) dT (E.37)

40T

Collecting all the new terms (i.e., equations (E.19), (E.22), (E.23), (E.24), (E.33), and

(E.37)) and forming the Lagrangian in differential form results in

I = T,, f(T,Q(T),Cm(Xw,T))dT

I L O '\X " I /x.JJ+To D.h2(X,T T(Q(T) + D )] Cm(X,TQIXdT

--•Ti(Xw,,, T{) Q••T+ iOCm(Xw ,T) dT- w' •JAXTw9 +J (XT)[-w Tm(X.T)ID QXdd (
Q(T)~~~~~~ ~ ~ ~ +D Q wTd- Z 9 (,)QT+D)C.(X,T)dXdT

+7" rA(X'T)I-6a CmX'T)]dXdT

0

+T  A~~(X,T)&e-a T C,,(X)dXdT
0

++f•' a2,6Cm(X,T)eaT(i•e-tA(X,t)dt)dT

-J• A(X,T,,l)C=(X,T.,,)dX+ f' )(X,0) C ,o(X)dX + E. JOT C (X,T)9- (X,T)dTdX

(E.38)

Simplifying equation (E.38) by collecting similar terms yields
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£ ft f(T,Q(T),C.(X.,T))dT

,9A g2 L-(•)(T) x9 +X ( TD
+~ (xT)+ gX2A(YT~T)~-+DJJ- -y (1 XT) d

"-fa(X"T)+ a2 fie (•T (J t eA(X"t)dt)

+T x.p"-aTA(XT)C.,,o(X)dXdT
0

-f-D.(oT)"(o,)-ý- IoT dT

+JT-•C.(X.,T)[ 9(x T)(XTŽ)+ VQ-(D (X.,T) Q(T) +D)- (X.,T) QT)dT

-F Z(X,Tfi, )C.(XTfi, )dX+ f %(xo) Co,,0(X)dX

(E.39)

With the Lagrangian in two forms both the abbreviated version (equation E.9) and the

expanded version (equation E.39) and noting that the Lagrangian is subject to various

constraints, we next take the variation of the Lagrangian with respect to each variable i.e.,

C., X ,and Q. We start with the variation of I with respect to C. which is defined to be

&[Q, Cm, ,;O, h,O] = lim-d.[Q, C. + ah, A] (E.40)
a-+ da

Applying this process to the Lagrangian in equation (E.39) results in the following
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QCmA.;OhO] = -- [T,Q(t),C3 (X,,T)]h(X,,,T)dT

,OA -(X ,T) + s•-2r (X , T Q(t)+ D )l- -. Q + D(]}+fTI-J• h(X, T)• -O oX, L -OX X XJ8XdX dTr

-fiaA.(X,T)+a 2fleaT (Jý e-atA.(X,t)dt)

-fT'- Dh(o, TfA(o, T)f + ±"- (oo, T)]dT

+J4 h(X.,T)IOA (X{ . T Q(t)+D J(XwxT 9)- +D w -(X,,,T)2 tJ)dT149 [ x "x. x. j x. X"2
- Ax (X'T,..) h(X'Tfm,) dX 

(.1
(E.41)

Next we take the variation ofI with respect to X using equation (E.9) and

&[Q, C., A.;0,0,,u] = lima-•[Q, Cm,, A + a (E.42)&-.60 da

then

d [ Q , C m . , A ; O ,O , /] = f T7 f t 9 C m CxI.(, T | 2 e . d X d T[x.g er - Y Cm(X, r)d T)Ca IT

(E.43)

Lastly, we take the variation of I with respect to Q. This is equivalent to the

derivative of I with respect to the switching times T, and T 2. But first we rewrite

equation (E.39) where Q(T) represents pulsed pumping where Q(T) = I when evaluated

between 0 < T < TI, Q(T) = 0 when evaluated between T, < T < T2, and Q(T) = I when

evaluated between T2 < T < T3 where T3 = Tf,.a.

Define C) for i = 1, 2, 3 by
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. ~(Y, T) for 0O•T•5T,

Q~X, T) = ~c(Y(x -r) for T, <T5Tz (E.44)

I)(X, T) for T2<T53

Similarly, define A( for i =1, 2, 3 by

A('")(Y, T) for 0•T:•ýT,

A(,T ()Y) for T1 < T!•T, (E.45)

,t() yT) for T, <T:5T3

Evaluating (E.39) using (E.44) and (E.45) results in results in

£J4T,,Cl)(,c.(,T)]dT-J'" 4r,oC(')(X,.,T)]dT+J'[T1 )( T]d

~9T ' eX 2 L ~ X)9XL 'X X)
+ J CO(.T {T~eaA~td JT e~ X) dt1 dXdT

+ )-.T -Ia'(XT+a2k[J e-atA~l()(X, t) dt+ J, -atx3(~~

z -paAý')(X,T) + a2 fTJ3 e atAý 3 )(X,t)dt

ig,1(2) D

+X dTmc (X, ) X,ýT)d

T)K3)(cX,Ta T'eTý.ea()(,td + TedT3)Xtd[ fT9X

gA(3)92 L6[A(3)+ED)]



+JO IcT ex(WI Tj--(X,T- + D (')(X~,,T) +. X,.) A2(X.,T) X. 2dT

+fT C¶(x)( , T -(w,) D-A2 X )D d
T,' 1 0)x}dT

+f~c~(IT ~T{(Xw r)( +D) IT I~~x +) 2 ~~X dT

(E.46)

Taking the derivative of with respect to T, results in

= [,,~ (XIT )] 4-I'o[c)(Xj,T1 +)] -I+

md 1

X.-pfaA(')(X,T ) + aIfleaT e- t J2) (X, t)dt +f Je -atX3(X,t) dt]

-PfaAý 2 )(X, 1  + a 2pfk $T i eP -a42)(X,t) dt+ Qe atji3)(X, t)dt]

D C ( )( O , ,) ,ý 1( 0 , I) + - ( 00,T ,f + D C (2 ) (c2),(i)I2 )( + -6 P( 0, T I)

m L ex~ m 0,~ 9X

,OA~l) I D _(E.4Xw)
TakingX,, th eiaieo wt epc+t 2 rslsi

(X.IT) +DA(AXITE . XO



q T2,O, C(M)XWIT 2)]- f{T23,1C,C'(X., TI)

~,6aA"2 )(X, 2)+aXeT2 Q a2~)(Xjtd }]
-f ~~x(X)I -xT 2 ) + gX2 +D] '2 +

-fla.()(X, T2) +a2,6e a T.T e-atx()(X,t)dt

C(3'hXr. OTI M~~cTO)+ (qX2 T'f+ DC 9x X+
21]aT T23)j''X~t 2 )dt~

-C~x , 8c'(,2T -

-C~(x2T A()-(x0, T2 ) + +DJ (3) (xAT(3-) -1(00 T)(X + >
m ( 0 IT 2 1 O x ( 00 T ,) m 00, ,)[lo x ( E .4,)]

+C(2)~E- 1()X ,



Appendix F

With the first variations determined for each independent variable, the second

variation must be determined in order to determine the necessary and sufficient optimality

conditions for our problem.

Referencing the first variation of I with respect to X in the direction of p

equation (E.45), it is easy to determine the second variation of I with respect to X in the

direction of g which is by definition

8 24Q, C m, 2;0.0,u] = if.0 1 d2 [Q, C,,+au]=O (F.l)

Additionally, utilizing the first variation of I with respect to Cm in the direction of

h, equation (E.41), it is easy to determine the second variation of I with respect to Cm in

the direction of h as,

2  qT 2

[Q,Cm,2;O, hO] =im---[Q,C+ ah, A] T' [T, Q(t), Cm(X,,T)] h2(X,, T)dT
a-*O 2 daC = T)] hdC2

(F.2)

Unlike the previous derivations the second variation of I with respect to Q is

more complicated and can be evaluated by examining the second derivative of I with

respect to T, and T2. First, the second derivative ofI with respect to T, is accomplished

by referencing equation (E.49).
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+o T~, ((. a2 Ik l ýfeLZ2 (,td + e t A3 x ~t

aX [T, )x +)( +D)] - 'o(1 D~(+ )]

OTe 2 aA2( tdt + Td-a

-OTA' (. TI) + a2 fleaT
, [f 12 eate(Z(X, t) dt +f~uA3(,t

g2 (x,o )-I(x)
~~3T 2  OX O9 9 LeT X

c90T +pa t12(X aA3 dX-f C(')(X,Tj -6a -(XT 1 )+a a~ TI e-t2( t)dt+ JTe t~)t)dt]

x. __ Mj 1T [f.. f __

-D 2(& [ T, Je m '1 [T '' 9XOT

+ oc)(xT~ ~) (X,~)r+Dv(2)(yXT 2)rIk (y (T)
_- yOT lOX W kXJ r2+WT- atAxJ( dXJI 8A 2) (X T )(I+ T -aAL(x,)( 1 t~ dt)

1 0X)+ [T e~k~ (TiXX~ tT (xv xT f
i-FT,



OT exi~ t9 W

C(2 't() (X T ) D-C Mx,r 4 T -xr 1 D-x,, (F.3)OX 9T 4T X

Similarly the second derivative of I with respect to T'2 is,

9112 [T2F 2)()xT.D
+)] 'O + T-O-11 2)(X ,(wT 2)D[2

____ 62 m2 w I T 2)] Dl
(x,r 2)+ -(Xw,r 2 D--(,j[T,,C()X9T2 ] [X T XJw

OT~ c mxr OC m2 2 ) OTl 2)

-A(X, 1) 6 3,a2 [ia23

-a26ea [eT2iI)(X, 2 )]IZ ()X 2-

-~ ' ( OT4 7X2 LOX IJ XL

(flaA 2) (X, T2 ) + a 2,8e a T( J T
':eu,((x t) dt)

(YT2 ) + T2) D-~ gfet. ( 2) , X) d T 2) - D2 al(a~ 3(, 2 )

9TCaf( aot~) dt 6

6$3 A(3 1X T2 6j3 X

OT -,a (3)(X T2) 1+ 28e T -(-,T 2 )-)---t),T 2

0 '&aTXT (x ,r),A2(x3r)k X~t 2 T T2()

-#a - (XT2)+a (i e- a f e )



+C(2mdOAIX.,T 2 ) { e X L T 2)D-I ý- WI 2)X J

IOX4T X X II

m~ / 1 46X 46T (X , 49 YX, XW)- eT XJ

(F.4)
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